题目描述

N (1 <= N <= 50,000) cows conveniently numbered 1..N are driving in separate cars along a highway in Cowtopia. Cow i can drive in any of M different high lanes (1 <= M <= N) and can travel at a maximum speed of S_i (1 <= S_i <= 1,000,000) km/hour.

After their other bad driving experience, the cows hate collisions and take extraordinary measures to avoid them. On this highway, cow i reduces its speed by D (0 <= D <= 5,000) km/hour for each cow in front of it on the highway (though never below 0 km/hour). Thus, if there are K cows in front of cow i, the cow will travel at a speed of max[S_i - D * K, 0]. While a cow might actually travel faster than a cow directly in front of it, the cows are spaced far enough apart so crashes will not occur once cows slow down as

described,

Cowtopia has a minimum speed law which requires everyone on the highway to travel at a a minimum speed of L (1 <= L <= 1,000,000) km/hour so sometimes some of the cows will be unable to take the highway if they follow the rules above. Write a program that will find the maximum number of cows that can drive on the highway while obeying the minimum speed limit law.

编号为1到N的N只奶牛正各自驾着车打算在牛德比亚的高速公路上飞驰.高速公路有M(1≤M≤N)条车道.奶牛i有一个自己的车速上限Si(l≤Si≤1,000,000).

在经历过糟糕的驾驶事故之后,奶牛们变得十分小心,避免碰撞的发生.每条车道上,如果某一只奶牛i的前面有南只奶牛驾车行驶,那奶牛i的速度上限就会下降kD个单位,也就是说,她的速度不会超过Si – kD(O≤D≤5000),当然如果这个数是负的,那她的速度将是0.牛德比亚的高速会路法规定,在高速公路上行驶的车辆时速不得低于/(1≤L≤1,000,000).那么,请你计算有多少奶牛可以在高速公路上行驶呢?

输入输出格式

输入格式:

  • Line 1: Four space-separated integers: N, M, D, and L

  • Lines 2..N+1: Line i+1 describes cow i's initial speed with a single integer: S_i

输出格式:

  • Line 1: A single integer representing the maximum number of cows that can use the highway

输入输出样例

输入样例#1:
复制

3 1 1 5
5
7
5
输出样例#1: 复制

2

说明

There are three cows with one lane to drive on, a speed decrease of 1, and a minimum speed limit of 5.

Two cows are possible, by putting either cow with speed 5 first and the cow with speed 7 second.

思路

从小到大排序,然后贪心选择车道;

代码

 #include<cstdio>
#include<algorithm>
#define LL long long
const int maxn=1e5+;
LL n,m,ans;
struct nate{LL t,d;}s[maxn];
bool comp(nate x,nate y){return x.t*y.d<x.d*y.t;}
int main(){
scanf("%lld",&n);
for(int i=;i<=n;i++){
scanf("%lld%lld",&s[i].t,&s[i].d);
s[i].t*=,m+=s[i].d;
}
std::sort(s+,s+n+,comp);
for(int i=;i<=n;i++){
m-=s[i].d;
ans+=s[i].t*m;
}
printf("%lld\n",ans);
return ;
}

[USACO08OPEN]牛的车Cow Cars的更多相关文章

  1. bzoj1623 / P2909 [USACO08OPEN]牛的车Cow Cars

    P2909 [USACO08OPEN]牛的车Cow Cars 显然的贪心. 按速度从小到大排序.然后找车最少的车道,查询是否能填充进去. #include<iostream> #inclu ...

  2. 洛谷 P2909 [USACO08OPEN]牛的车Cow Cars

    传送门 题目大意: m个车道. 如果第i头牛前面有k头牛,那么这头牛的最大速度会 变为原本的速度-k*D,如果速度小于l这头牛就不能行驶. 题解:贪心 让初始速度小的牛在前面 代码: #include ...

  3. bzoj1604 / P2906 [USACO08OPEN]牛的街区Cow Neighborhoods

    P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 考虑维护曼哈顿距离:$\left | x_{1}-x_{2} \right |+\left | y_{1}-y_{2} ...

  4. 「洛谷P2906」[USACO08OPEN]牛的街区Cow Neighborhoods 解题报告

    P2906 [USACO08OPEN]牛的街区Cow Neighborhoods 题目描述 Those Who Know About Cows are aware of the way cows gr ...

  5. P2906 [USACO08OPEN]牛的街区Cow Neighborhoods

    传送门 曼哈顿距离好像不好直接算,我们可以把牛的坐标转化一下以方便计算距离 (x,y) --> (x+y,x-y) 那么距离就可以表示成 $max(\left |x_1-x_2  \right ...

  6. 洛谷 P2906 [USACO08OPEN]牛的街区Cow Neighborhoods | Set+并查集

    题目: https://www.luogu.org/problemnew/show/P2906 题解: 垃圾水题 #include<cstdio> #include<algorith ...

  7. [USACO08OPEN]牛的街区Cow Neighborhoods

    题目描述: luogu 题解: 技巧题. 曼哈顿距离:$|x1-x2|+|y1-y2|$ 切比雪夫距离:$\max(|x1-x2|,|y1-y2|)$ 曼哈顿距离转切比雪夫距离:$(x,y)-> ...

  8. USACO Cow Cars

    洛谷 P2909 [USACO08OPEN]牛的车Cow Cars https://www.luogu.org/problemnew/show/P2909 JDOJ 2584: USACO 2008 ...

  9. bzoj1649 / P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

    P2854 [USACO06DEC]牛的过山车Cow Roller Coaster dp 对铁轨按左端点排个序,蓝后就是普通的二维dp了. 设$d[i][j]$为当前位置$i$,成本为$j$的最小花费 ...

随机推荐

  1. spring boot 的redis 之初理解

    项目到末尾了快, 这几天安排我结合业务场景给项目加上redis 缓存, 我接到这个任务也是懵逼了一会儿: 问了一句让我自己先想办法,没办法硬着头皮查吧, 要不不得不说spring boot 还是好用, ...

  2. Android如何用阿里云的API进行身份证识别

    准备工作:在libs下添加 alicloud-Android-apigateway-sdk-1.0.1.jar,commons-codec-1.10-1.jar 在build.gradle添加  co ...

  3. SpringMvc之参数绑定注解详解

    引言: 前段时间项目中用到了REST风格来开发程序,但是当用POST.PUT模式提交数据时,发现服务器端接受不到提交的数据(服务器端参数绑定没有加任何注解),查看了提交方式为application/j ...

  4. innerHTML引起IE的内存泄漏

      内存泄漏常见的原因有三种: 1. 闭包 2. 未解除事件绑定 3. 循环引用DOM元素 除此之外,还有一种泄漏原因少有人知,它和innerHTML有关,不过很容易解决. 出现这种内存泄漏需要有三个 ...

  5. Intel手册 Chapter23 VMX的简单介绍

    23.2  虚拟机架构 1: VMX为处理器上的虚拟机定义了处理器级的支持.VMX主要支持两类,VMM和VM 2: VMM作为HOST可以完全控制处理器和其他平台硬件. 每个VM都支持一个栈,并且由O ...

  6. spring 常见的注解

    spring中的注解都必须在配置文件中进行如下的配置: <context:component-scan base-package="com.shanjin.oxm.service.im ...

  7. Android(java)学习笔记184:多媒体之 MediaPlayer使用

    MediaPlayer类可用于控制音频/视频文件或流的播放.关于如何使用这个类的方法还可以阅读VideoView类的文档. 1.MediaPlayer 状态图       对播放音频/视频文件和流的控 ...

  8. 【整理】iview中刷新页面的时候更新导航菜单的active-name

    iview中刷新页面的时候更新导航菜单的active-name https://blog.csdn.net/lhjuejiang/article/details/83212070

  9. Linux 编译升级 FFmpeg 步骤

    如果服务器已经安装了一个 Ffmpeg 的话,比如已安装在 /usr/local/ffmpeg 目录.Linux下版本升级步骤如下: 1.下载 ffmpeg-*.tar.gz到 Ffmpeg 官网 h ...

  10. 【传智播客】Libevent学习笔记(三):事件循环

    目录 00. 目录 01. event_base_loop函数 02. event_base_dispatch函数 03. event_base_loopexit函数 04. event_base_l ...