2102: [Usaco2010 Dec]The Trough Game

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 117  Solved: 84
[Submit][Status]

Description

Farmer John and Bessie are playing games again. This one has to do with troughs of water. Farmer John has hidden N (1 <= N <= 20) troughs behind the barn, and has filled some of them with food. Bessie has asked M (1 <= M <= 100) questions of the form, "How many troughs from this list (which she recites) are filled?". Bessie needs your help to deduce which troughs are actually filled. Consider an example with four troughs where Bessie has asked these questions (and received the indicated answers): 1) "How many of these troughs are filled: trough 1" --> 1 trough is filled 2) "How many of these troughs are filled: troughs 2 and 3" --> 1 trough is filled 3) "How many of these troughs are filled: troughs 1 and 4" --> 1 trough is filled 4) "How many of these troughs are filled: troughs 3 and 4" --> 1 trough is filled From question 1, we know trough 1 is filled. From question 3, we then know trough 4 is empty. From question 4, we then know that trough 3 is filled. From question 2, we then know that trough 2 is empty. 求N位二进制数X,使得给定的M个数,满足X and Bi=Ci ,Bi ci分别是读入的两个数

Input

* Line 1: Two space-separated integers: N and M * Lines 2..M+1: A subset of troughs, specified as a sequence of contiguous N 0's and 1's, followed by a single integer that is the number of troughs in the specified subset that are filled.

Output

* Line 1: A single line with: * The string "IMPOSSIBLE" if there is no possible set of filled troughs compatible with Farmer John's answers. * The string "NOT UNIQUE" if Bessie cannot determine from the given data exactly what troughs are filled. * Otherwise, a sequence of contiguous N 0's and 1's specifying which troughs are filled.

Sample Input

4 4
1000 1
0110 1
1001 1
0011 1

Sample Output

1010

HINT

 

Source

Silver

题解:一上来居然没有别的想法——只有暴力。。。然后写了个纯粹的二进制穷举,然后,然后,然后,居然AC了?!?!44ms也是醉大了= =

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABS4AAAAqCAYAAAC9f8VjAAAgAElEQVR4Xu19C5BU1bnujyIOPmAwCKO8BpnIw2gGOecyk3s9DuZWZqwyMtxSGEuNg6+MmFM2ycmx4VplU5UjbeUmtHWDmfgIbcCyIbnlmFhlk3ujY6zjDCdnZEIUhjjIAD4G8NGoaIOI9/vXfvTeu/fevXdPv2ftKkqh916Pb73+/1v/Y8xXeChHz5dffklffPEFcZFnnHEGnXXWWeK//PcxY8a41mJ8h8vhP1rTuBx+uIxTp06Jf9f+jB07VtTBf+QjEcglAnI+5xJNWVaxEZDzudgjIOvPJQJyPucSTVlWsRGQ87nYIyDrzyUCcj7nEk1ZVrERkPO52CMg688lAuU8n8dYictpt+7IJTayrCIg8M7mxaJWOZZFAL8CqpTzJz+DKHHND66yVIlAMRCQ67kYqFdOnXL+VM5Yck/keBZ2PBnv06dP04zb/lLYimVtFYGAXK8VMYyyE6MQAUlcVuCgyw25Age1gF2S8yc/YEtc84OrLFUiUAwE5HouBuqVU6ecP5UzlpK4LPxYyvVTeMwrqca3f/NfhBenNPCppFGVfRkNCOjEpeaWPf17/zEa+l3RfZQHekUPb947J+dPfiCWuOYHV1mqRKAYCMj1XAzUK6dOOX8qZywlcVn4sZTrp/CYV1KNcv5U0mjKvowmBBwsLi+hlzdfSHW2SJym5PETtH3bAK168WQesKqh33bOom+dSzT45x109eNEd65dROvmj7Wp6zQde/dj2rZlL4X+loemlGmR5g05NZYanqluuf1Wpp2XzR4xAk7zJ63gk6do8G/v0j2R92j3iGtFAc3zafctE2ginaJXt/TRjdvtC9X3g+Mf04Mde+iJXNRdgDI840r53mMzd3bDw4tp+cV4792jNO3+t/A/59CNy6fRD645m17reJ1WZy5CviERqGgEXNcz1s1irJu3NQSWL6B93z2fqtS/H9tzgBY8NFzR+MjOuSNgVZz1Pdfls8F9H9OFczKfkRL7wiPgXe4ufNsqsUZ74ukcunXVJfTDK86lKdAhxcNy6sBR+tmmg/T793OAhEc51X9NpauPTZ9XQz9aUUONnw1Tw0+Vc6tc5XBtXOznz0QKrZ1Ny+efDT2EH+YYPqL1Gwdp80F/I5pvfOzKtxsnL632dPb8+SjRPym8UDqX4KUW+Y5EIDcImIhLtrpULC7diEvtMPictv10F60eyE1DUqX4IS4NbYmgLZK8FICYTeAlcZnrGVrp5Xkn2BQkcqaEexQI8y0Q5Gt8/eJKJ/O1x2buYRpxqY8N2nQr9trMRcg3JAIVjYD7ej5Oj9/6OoVUBKyXrznbMysa4crunCQuK2t8JXFZ2PFMI54mT6En186ilgsdErXyRfcDuOgeKXnpUU71j0bpEpeaPGg8t8pVDtfGxc5V3NFI6uiHdPMP36RuH4Oab3zsyrcbJy9NlsSlF5TkO6WCgE5ccrZuDnQ8+46daJvTBjqOGpfPoSe/yze+RIf6dlND5JMc98WFuDRZWMECqH0Wrb1qAk0ZhybAwuEGWDj05Lg15VicJC7LcdRKp81eBHC+2Vt39wxFSDz5Cf3ijt20fqRd8CgQ5lsgGGk3nL73gitRIfbYzD2UxGVmjOQboxsBd+LyNPX94S90/TbG6ALa8r+/TkuqU3hJ4nJ0zx3uvaur4l1X0Dv/NB5vyYuicpkp3s73culN6bfTun5SpNMp6vvTAQpG36fdMyfT+pWz6Ht1isfekV37aOFPR8hcepRT/SMoiUv/mGX/xcHoP9AZZ5yhGmtxOTPpj5svosvwf8cGD9IN6z6gulXzaEPjeHhK4DzfivP8ee/1FUNPyZa4NPVKnj3eB1m+WRQEdOLyxIkTgrisu3sXGuK2gaaIRU34tl+g6WXoyjBuLx5//9yUOfbxz+k53fXcK3Gp4DW9/Ru049vsE3CC4v/WT3fk3AK0KOMyokq9C1B242w1lccmfhTu+Jv2mNzxF1xTR79cPonqzlVuN8U72/ZRqFcJH5Aa6+PUd865tAhDlBx8j+as82lvPyIk5MfZIOB5/lgPOINAN3jgS5o+62wc+FiXG7Eue8fR9TfPph/hokGbM0ms++3bBhFy4jOlmYbv3+j7jCZcPoFm8KUEXH3eeGU/3R79ULhe2u43ky+g0N0zU3sKuwf1HaJ7Hj2iuLHrZaM98RN02TVq2ceP0282vk7br5hPYcu/rcmxBbdnXCl9j+UuZFpzhOsks5tL+tpNdwE346656JveGzxPVaINs0l3Ic9mhslvJALlj4DTej52/BRNPHcsLNH3wx38CNFknLMb2MXqJB05Pk64MKaIS94X54gL2BnCtTHdNU1XRgaPUvc5k2jpxayEn6ZDuw7RDZtO09ofzzD/G1z5dBf1mVPo0bunUdOscarr2yk6tOcoPfRYym3S7qz+4viXdNa5ZxIlEhT45730W224dJd3EGqrYXk9Qg6g/GdB9j3Iiri0IU1GMj8ynynZ92+0fen9fLcgc/lM+u3KC+lbF2rhsNQ94KdwT+X1ZRjzvj8fo4mLNLkbe8CewxR86KBuCTa9+ev09LILIGOx3HSCXtr2Kc245Wsm906vMgDBgvFR7C3N2G+UEBdo19FPLbrARFr/4CW0vG6ceOfYgcO07bOv0V0c2stoaML70L2GshBu7NVXDtLqpxWZLpvHjHeKdDrUNwCDmmOGIifj4mgWzXjvI3piy1spl18PeyNfJF/fXkfrrjpfMZABpq/+7RRdBoXGFNIok/zpqYM+iMsMeKZk5E9o266x1LxoPE3U2v/ifrrx6RQ+Te0LaIPWP5aHX/mSlrZo4SjeIVqmhG5LPUoop+2L1BBuGOfHXyFq0eVnHltzHZ66X+CX3nqiXhCXtbe/ptacwv8I5tBCMYdm0O+fvJgWATvdUMuBuLauq9QYHKf4wbHUBPdzXiNJYLwt+ndaY9GVj/k838160EfUrIbYs46TU8gtR7gdiUtnTsdv27luefYUeMJXUHU+iUuzNdDgn3ciBuVJh1gXLsSlHYCw2noIVlsbDUp7WoxL25h2qXreiO+g7zxdQaOTZVe8C1DpY3TjjxdS5Ao+4SyPUYHRN27LOwbXVjvT8yO73sRt54dZ9kp+VigEvMyfBZdfRD9aOV23uBRr13ZeKC6T3TgMn4QFiRbjzXy4/g3xLEF4O80r8fJpxFUZwH7zic1+cz6I8nmIyZjuIqQTBG5lHz9Jx87VFHu1ZYkP6Z5/fpN+n0PQGVe7cBzmeDH2e6wjNoY152XtelVaJHGZw4GXRVUkAo775OAnNL0O8SxxQXsD3Mt6bv4GvdMCzQ/xuF+dOEEogdq+1Ih9cYvdvmiQdZzduE7TkQTRlGrjvnea3oj/RZGDJuMC5CdWpVMZiiQuHu6Ah0o3/t/2rN73KZ2Ycx7UtpP00mM76RYopvysefAf6Qd1qA8ExeIHhrImHSpyQvjslPk8sHzspDy6EJfp1WeYHx7kOJ9dGtWvs6cTP9ZwW+7x4FKXlFbwPMku+OhQDzzfHoXn2+Vfp95/vQBr1vCcRLzscWcIuUtrhzcZwFmmYu82JX7vOOwH31T2A8OThChXxSqEvoc59TEl02UzcUz7r/Fi2osBi8e9cTr27pexd6fLrdxiLRa7B/nTUwe9EpeZ8XTOC8ENOUHPAaNVMPKZjouolw2xl0UzMWcIc0bpnwfikmOykzLHUg8utv4tH6HkPAHp6aXBx64Q7ynGWvyYPSM4f8b2F9+mn23/xHzO+SUu7VqTQVdWPnHfv0uJuEzvojx7PE1C+VJWCOjEZTKZFEq11eLSsVQQWQ/iJp4TY/i2uMSG2BffT6ueTtLStfNprUi8AwF5IwTkXn8Wl2RDdGaFRAV95IV4UrrrTC4noZh8F4oJXbeAfrfifMPt4jgoOgtF4o5jg+/SHRsPUc85k+nRwBxaemFKIUspQ3z4gZjaM4FunPg+/TbHVmwVNGwl0xW/sRgP9eCG+1HcThoUIUUxfpsmXHUevYax//WGqcIFI3ngKAUfewsWPIhHFFDjEWmXFqbvP6AgAmL3XDyTHm2/SFjssvXPPdhzpmjJujTB2CC0PvfY32nVK6cQ0qIOIS143qqWQYu0xD/avD2Mve4yCs9XSPpjB96jYGSYptx9uZoILPcuek6KTeY91t+ac167BpLCaDHppgxr78kYlyWzPmVDSgMBx3O2B0HsG9nCUtl7jtyrkH1Hdr1Hg3MuMhCXpCciPNSzj25/9H36eN4MnKWw8BDJCZWL4dRZCoWT97cDU+jlf5uqJk+EBfmmv9MdRy8GafE1QVpohEfqIuMkvfqHQVq97QRdeXMdhVt4X0wRHvZn9QlasnKBONNT7pWa9YnRDb40xqIcW8Hzh0M0zVrZl978rIhLP/PjQ09yXDniWqw2739yIZ155pk0s/0/bWVr23ZpFswnccG7DjFxP7uAnnzw69TCYSXSzl7IT7gMCUXepJcurqOn74IlJYsvkF2mPXCQ7sWlwlpBIqp7wq4qCt07m+5S3aR9EZcHQIL+TyZB2WNmNzxmxlLoJ5fRXbNQviZ3zavDO+qeI+SngzR4xdfp1zfjOwNxGcdc3sFhD44jpFBkkNYPjKUbV11KkcazzVaZPgfOtP/6dG/1tjcSPfpzZQ8kWMk9Diu50LsTYDk6GxbuGrGHJJKkyZbq+rOTPz1ZpnsjLqd7wJP0hLawyu07QLdHEga3Z8LlFhv5nG/Tv+qUXG5Ikuka45KNCnr2w7vpY5p486W0RSV6S92QaN/j3zRwHsrkmw459w9IEDrFOBfhGfbSKwfoFs1K1TdxmcKnznD+aoY82Z7vuYxxaVp6WVhcCjLcs2wizx6fW5183YKATlyePHmSvvzyy8zEJUz8+wY+gMn9IT1Dm2/i8ugHtPiHg8otRtomIInLkc5S/8RlKotzSvhhk/YTtO8gXL13HaHNzx9TM0enXDJs26lamSzXshJrVicj7ZT8vmAIeCUuk7BU3LfrHSjcRyxr2aLYahZHGomoCXFXzaWdd1dDSMD82wQB8CxNANQuMVRhYlU97WAhV4339YaFuDwCK+Ff2lkJi8/VthyzKVt3e1TrfxGvG10hc5yExiuulLbHeltzV+qKi9PalcRlwRaRrKjiEXA+Z3fT4PwFsEZnBfEAHbuKrR7N1iuCXHxxIu28l/c/+yeJi8E56w6liEuVoCA6n56EQs3l6+SG4d8U4vKkHlfTHE9zHK3/yUL63qzUt8YQPsJCVG1OI/bd3/G+q3lb6CSL5h1T8UOc1w4e2LRIyNyX3NmfXk82xKWv+TFOj+fmJsfJmPHepwC7nrLxx5y7/oqPvJFQSunwsrhqKi1vOJ+unDme6qpVl/E04jIlp/NXZsvJo/qeoO0bomg9TIVfi0ulZexZc+u3q2nRzHNoDlzZhVWdRlzqspI5TJdVH5z+k8UgPJ1wzD7EV/bEZcqyzn1vPKWvkUM9O3E5r4TBsuqsm6/wIH+KWMeZHm9zJuQBz57/kXLjfrADCYlE1dbybdygbfrHrsbek/N460MmJArx+6Gn/pG++OKLtP13esMMWnfdZBFeJWVFarAO9ktcqgYXivfWOJDFCxUyXF3f+jr2tX8P2xqM5TfGpYsXra+2y7OnEPO7kuvQiUtewCxE2R66z55Pa+6+lH4gLCNxAw/B+LsPpeIo+SYuXa19/BKX5bNRFmoijYS4ZPeyLWtn0BJrZj41FuCav2XIOK8KNZdpxKWMhVeoYc9ZPd7nj6VKp6DlmhKWFupBm0uqQK7fXFusHS3WflbiMnW7bA+BsDQ4qBGXhrLtrAjzaFnoiqvrHuttzT2Rce1K4jJni0QWNOoRcFvPT1y4CNbcY+GS/Tl9fPF4miISmH1IV6pxqITC3DeJdsO6g60fbR+LYmNUsu0UFPO/paw5ra6qurxmVZysZ/XkWvqjsJRX3MUHmxUCIicJLkb97AGRlOaqaAAlC+LS3/w4h17ezFbBDo9tWCY5aG4I8H7AeQJm3PYXG5LI4cvLscbuxRozxRBU3/VFXH6mW2+bybh0fcqTq3ifgx7ATdPmhtMctch7ui5gC4GZjPUzw7J3FU/HRKvXvDeSvkbMe6hZbtVjPTo03j1UgPEjb7qsewbo9PiTzsSlU30WubxCiUvzerUZvMnn053LZtCduFAQFsQaAemXuLScq07nr7/9u7SIS39tl2ePn31OvpuOgMnikg9d59vCibgpmKfcFMCK6Y34X2FqrtxA2SfLgBvBBsWNwJeLwnZ/xGUqBkn2N3eVNjHMCpXDrRp3ugEWb8Liw0Z4mDmRbm34Gi4XJ9CVdWcL5Uq5yR2j30K6Hci2wlGlAV2h/ck5cenb4tI8H6d7tbh0U7a8kpTFIi4f58nktMemLC49CcGOa9dgvSVdxSt09cpuFQoB133y2ALaZ4wdJtabhVzQLS7dlffMJOWw6LL5vSwsLtMuGVPWmcf2JOjt+dUKiSlC+hQK5cqth4lLTg6RK4tLf8pjyurF05lSucOQs555i2Ftrk73cILHW18fQim99jE1LoOehVBM6a7ibhaXCd3COhcWlz+fo1pbQzcY3PUBbXvlGE245hLFeEWTs3S5zqPFZY6NGLwn54FL9MOXUuMXx2jjloP0xMB5Hq3Rv0hPzMLDZyGudIvLEZP93ohL3eLSBU9vxkTGhEaIkxpBnFSb/lWqxaU1OVpKz1Di8ofUpboA+sf/NYY1sCUu0y0p7cfA2eLS3/5dzsSlPHtyduiM0oL8Jee5HGSkGkeJ2ILg/t20Hm6ft8J1k60LRJzKTXvplpHEVvFMXMK9onkmhZchzgvfVmITvwEBo6VrC5F5QzbEMUFGvDgyfz/IwYZnIi6lHqtFs0K7CAf1TJFBzRi/csuP59ASjrkjzME/MsRF+ZgeemgPEirhu7X4DuOgWWNI4rJ8d5ScE5eGWEieY1xqsZzOmUEbEPNNZDVEiIkbEGLiMmuMS8Rh3Yc4rFUi1s4+uvnRT+nKVQvol8K9HFkSV79Oa/QYlyVqcSmISzy2e6wxFpHTmjvLw9o9mHIvQ0yt3zyOzIbvusc0SleeFOurhw6cQ7sPqtngy3eqy5ZLBLJGwH2fNId3UDKSnmuxihqjr9nkux/QamQRfq2ujn53r3Lh+8afdtJ3oqkYl34Vm1TYF48xLu0UYZ2cUGFS92ApZ2U9bfQPOcYaP4qxgOXJu8XlcU9y3Mh7OXpKyEZu0uVkTga47k2EmKijX7arsSt9WVy+5T/GpYsMoFsRqrE3nzDKYT5jXL6hhZxgA4mte+jG5wltRW4Djr1pTPrpc6pYiadUQhrkUPjTAQpG36fd0HPW3zKDliOWucjoPHgQxhfvGbBy2xs9xrg8y4P8mcMYl3oIDxc8J1plZIGtlRj1H+NSJGWLHKEJ9Bl9624v7ug+B7WAr6dZXOqGPBwnGvkbHjtEhyYb9A/N4vIaeG+tVDwljuzaTzf/FPFDDbErNZk5NR9TcUYnLp+D2PvKt1pSrewuJt2JS+M47fY09wzAZxHj0p9sIs+eAk7ziqzKh8Wl0v8mHEJPC0JACQL/HXYZ14kDe4xyZnHpNAScoSuCDGYy8YtAKO0mCTdEf3RxSTNuOk2O2Z9TVrYcwNi2PBZy7sdNFTZKSVyW736RjQAueuvkKo6f7kQcynW2cSjV5E0esoprVt7pN5kTMd8utc0qrrs1loXFpfMey9hmWnNe1m5K6LWbnymLjrT1axDqxJdQXoKInbS5fKe5bLlEYEQIuO+ThjiUNokHtTPXcc0aFPpsFRuaB0X1x3AHVvKPmR7brOK2Fjypy0wuQEsYNCLg5McCAbvkEDo0eScuh0Uiikxnihwq7wgcjP4DjRkzJs1V3KkE1ot+di7iI7KlgN2j5QLw6JrqNau4Jxlg8jdon1M2bd2y0Cmr+GlkFTck8XHM4G323POOtPKmVc8RYa4eRJiranOWc71cbvcDiPfIRI7HvdFxjYhCNXnJg/zpqXMZQgKJ/Rdhj56FV+JPOG6ytdAUnt4sLp2ziiuZ6FPyoDWuJrdjM8KhrDNa4IrmeLMa9QRHnl/iZJmcHK329tfUmsYhAdU3lQRUaY8hxiUb6qgGPrZNVM9R18zuNrqyP/LPnri0G6erNaMIr3jmnbiUZ4/XoZDv2SPgm7hkd8YUSaBtbOPo1lXzaE3jeCVeE5J29PV+SlO+zVnpcugqntaHU3TkwMf0xNY3aaMkLXV00g50/LLgmjqKLJtIcxD4Wws4rCVXCSC5ym79ax7LS+mHV5xLU9SDkZP0vPbKQVr99IdKEhY8TTfPpXVXTYC1q7LJJxOf0LanB2lNrxI+QBKX5bvl5IO45KDU1988m35knDPI1rd92yCtelG13DMI6G/0fUYT5k2gGTwHT56iN17ZT7dHlflnH5piCrLxThMBtZWYcXBx6nuX7om8p8ztMiIu7ffYzGuOMc68didSaO1sunX+2YoFAsagexeysDdypmEX4hLJP9asnUN3at/BInY1EnkoAcflIxEYfQhk2iev15KG6Yp+KgxOSklJX7PH3v2QNm6ETHNQwTRr4pI/nol98W7zvnhoz1F66LGDenLFTGd1ynJTtV73a8Ex+qaGpx6bk7lYPikAcck1ZpLjPHVEviQQ4KzinJxHcf33SEI9PhHJsuqQLEvJH3AMltfrXzyL1ghDA6u3iJur+Fvi+wXXzaVfL6tWs3rj+42wjPtXJZZpKiSAFxlgHC6bF9CaK1Q54ejHtHnTCVoiylK8Lm55BYVOvoDWB2ar7Ydl2a5D9MRZ09IJrctn0pZbLqTGi1X9g13jkal5lSrTZTOF7PQconMgA11i0l9Yfhzc9xESyr5Fm9U9VdTnYW9U1sh8Cl8DWVRkSj9Brw6cosvgXmaUl2hyBvnTUwe9zhkUlgFPr8SlkMvbL6Xwt7k/nLU+Qeu3n0E/FPPPMN+uQttuxtgLnRAWrfE++v2s8iYuh359pSGvhzZAWBs/nkXL54HLUO8TWEbueeVtChr03+nQp59ernp7Ao8jgx/QaxOnmhLmpcbgOMUPjqVGyM4CY+SL2IYM9VZdORfEJdmM0/VPe5p8qZcKQFzKs8fnmMjXTQg4uIpLlMoZAfsDvZx7JNteSATk/MkP2hLX/OAqS5UIFAOBUbGeQUw8ilAxSy/GBaWeObQYaFdenaw4c1x52xiXldfdiu8RZynmBKcpC67CdtnkKg2X7Oufx4Xk8jq4pqqXkpv66MYXc9kmA9EG69B7Hhqk35+DEFQB7BeGrMm5rNFY1qjYf/MFnlpuKtHPCXpu425a1TuWboThSkR4VVqSZOa5LYUu3jVUR6EbI+uTCEgEPCNgyiouhSjPuJX0i/JAL+nhKfnGyfmTnyGSuOYHV1mqRKAYCFT2er5AT2ChYHua+rb+BWRIMZCuzDozZrWtzG5XbK+KPp5uIbtGnDjGbtgMMRLTfja61uZnyMtm/9W9fdxwyD67+kjQdQsbwOFEbqngvBGcHG3s2LFFu2gYybh5+zbl4eH2vtHS01u58i2JQHERkBaXxcU/L7WXzYGel97LQkeKgJw/I0XQ/nuJa35wlaVKBIqBQKWv5/UPL6bvcXZjDrvRcwhJz47ooWKKgXel1Vnp86fSxitTf3g82eJyZvt/Zno1T79zOJ45tPaq8xBiR4vTdxru5x/Tti17KZSPcFrsbn3vDGrWXMC5ZwgV9saud+j2PO8XZbN+Spi4VFzr65C8MuUazfv9kQPH6OeRQdpcwWFBOMYlx6SdduuOPK3HYhcrictij4CsPz8ICOKS47KcOHFC1GCb4TA/dctS84QABwk/44wzaPr3/iNPNchiKxmBshEIy2wQJK5lNmCyuRIBFwTkepbTYyQIyPkzEvRK71smQpi4nLWyr/QaV4EtkuunAge1gF2S86eAYMuqJAI5REASlzkEs1SK4qDv/MjYSaUyIuXVDnmg52e8JK75wVWWKhEoBgJyPRcD9cqpU86fyhlL7gnL3WzBNfuOnZXVsRLtjVw/JTowZdIsOX/KZKBkMyUCFgQEccm3hF988YX4iQ9ejvtw5plnSrCKgMBJZNvjMTjrrLNsa3f7nS1nOU4pjyf/lx+2vOQ/PKbGh3/X/vB3/Ifr5Xd57Pm/2qP9pv1dmytObdTe09phVz7XxQ//ps07tvrlfx83TknnZvzNDgxju4z/L+dzESauQ5VyPsv5XDqzceQtkfNZzueRz6LSKUHOZzmfS2c2jrwlcj7L+TzyWVQ6Jcj5LOdz6czGkbdEzmc5n0c+i8BTgrwSxOWpU6d0AkkSl7mANrsymExk8o7/WAlDLtHpd/53K9motcBIEmplWv9N+9auTmtPjKSo8TcjQamV74aCsS4ukwlRjbTV+q+Rml6JSy5Tzufs5l4+vpLzWbmEkPM5H7Or8GXK+Sznc+FnXf5qlPNZzuf8za7Clyzns5zPhZ91+atRzmc5n/M3uwpfspzPcj7nYtYJ4pIJI55QTPqMHz8+F+XKMiQCEgGJgERAIiARkAhIBCQCEgGJgERAIiARkAhIBCQCEgGJQNYIjIF1miAuNWs5SVxmjWXJfGi81SiZRsmGSAQkAhIBiYBEQCIgEZAISAQqDAEv3koV1mXZHYmAREAiIBGQCBQUAUFcctwBfqTFZUGxl5VJBCQCowwBqdyMsgGX3ZUISAQkAhIBiYBEQCIgEZAISAQkAhKBESEwBqQl5+cxJWYZUYkj+jhB/dEgBUO/ou0HptLc5jYKRcLUNq/KVOpQPEzBQIS27j1MU+euoGC0kwIN1XhnmGKtF9FNzzk0Yn0PfRVsUH4cilM4GKDI1r10eFYzfT8YonBHA3EpqWeI4uEgBSJbae9htGdFkKKdARJViSdJA10RCoc76akdB4hmLabb0K5IwFrOiECpyI97w0SNvUTvdRHVWHs4TIRhpIYeIm24CgKCWq91+mBYqfaxi+4AACAASURBVCOEtrQUpBWjrpIBzIEw5sNTO9D1WYQ1RFhDZFmLKixDRC2ziULI6aSuZB2vBOZTRzthXxBLkYKd+Hu9Ac4kEZYrYbmSulyxtgl7x6iDfPR0ONlNwYeX0MPUTJtui1N7bYl2fbibIvEEtbW3pu+Hfpo8HKPWX91EDUu/oqBx7vspQ747ihFIUi8O3caBIM7mNvu5OBTFHjyMPTiYtgc7y2Z2kGLDHtNI9Mx7RG1pUgA+yPT7KB6mAnY92YtxbhygIIQ122GCHJxxzhSwvaValZB516S3TsiXQcghrURmTafIPVGXX49J1mIdq4OoE3MBzWM53Und4tabvzX3x6oDxND/GArFtiOegRhR9zyLDFdkSHJfvVHHnEXN3w9SKNxh0DFRY3KAYtBVg49spwNT51JzW5g6I61kL8okqTtQS5GGfuBo2VNNOq8XXdVBn2Y9FwpRCApRqYpTuR+nEi8Ryk8nOIxI13aFq7DjTnI0j4axQC9attUCyHqs9XR5wPwS+JIY+JTgIzq/E+6MUKthEiV6O8H/RKhrO3gZMdfRp3AbWSig9MHw0n8v71hLBmZd4KDCnU+pOuNt0BkjKt+UejnRG4HuGRac1KzFt0H3xN/rzWyS8wwaoiiU2mEotWl8B9ocgVIbFjwV1h2U2giUWreSvWGYidsq7fkuYlxq2Zu5qcYEL4Vu+lC0hWZ31tMLXWFqqUnSUKydGkBgdPZDGVP34CGcbA2RauqM8YSvokQ33l3SRa07oaDW2x/74hsmQ3pj1MaLBMpsoLaNhiO9FMU/VGFyhFsasdHvpN6Apu0N4RBtoEh1J8X4kKhKUHe4hZZ0tdLO7iBxVbyA68OptqAxKGcJdbXupG5ojSUlhBR6MDPUV8rEpZUwTfQTtS8EwfoC5qIkL3M6k4ZBWtZDoO+EkCoOsASIRWCMZYY1ZBHk8RuTxw+D4LQKxEmMURN+6+jGWEHYxVLEvoC/78ff1YORBWIsV6xnwnpOvYPlKkmenI5q6RTGSnctz4nzHqb45J3U31aabF5vdAw1Jp6h9wIOZJFXSCVx6RUp+Z4NAkkczE1gV3YsxVy0Iy6xsQaxsT68I11R8S+bZSImM/0uhzDvCCQhGzc10podS8Ev2xOXGedM3htZHhU4ybyJAcgpTegDLlSZvCuZx464TMSpo3WYgt3tVDtCA4OS1AEKCr5CMrYNR6g32iZ0zF4Iv43Yd3f2BkiRVIahl9ZTuDZKXfitJgm9tL2BAjUxGoo0WXRMEEPRdmpauZUacBlkIi41nTfcTZ0QkKs96aoqcQmFSDf44SZBIeqEQhSCQjQAhcgrPVNQaEdTZVB+wlB+utu6KCaMpuy4kxzNI+DaGxxDrdU7adjnzbjCl9RS1MTv1FBsKEJN0MeS/ZA9WrqprSumEIPaXMfG2I+N0e5qUwyzl/57eSdtzqiY6RwQ64zpfJPS7n7onp3QPavVd7qhe3oxlACvBKV2CZTa9VBqTcSl2uZ+KLXGNdsNpTbuYIHhDcPM3FapL58xJtayqK3tp0j9Qgzifmy4KtNAYKKbZlNXh7oJs/VMbYCqu3oxwBotyJv/eFpCL9HnaRs5b7I4aOe1U6KzH0KBMvWHsQguCjfRzn7tcGAuM0DjcUO1cxikJK8FsCa1gWrq4ttmvSoQnuPBhrz0OUWahtW2GdvLqzpMNY1o90ed1CJ3dMcZVZJCi4sghulBSzB9cKkknxwiEIXA3oULfO2WXRQNgbkGhjjRj0A+qmsIBmnUDuIR/CQdPpxOXMZRRhCEJZa0/vAcawXZOYT/Vg2B2ISlJhOZ+vaiLFfCciUsVymA5XBcS6OoBMV/MYmCICy7J0doUm897XwgteeXRhuVVkjispRGY5S2RRWUI0OH6XBDOnE5DKG9vW0N9uCp2IMDZguLbGSzjBaVkrgs7kxMUj/k5JbIEMa7wZ64zDBnitv+0qrdTeaFETPNxp/9kHNqS6XZNsQl60kN/e2Qs6AlSeJyZCPFl4wXgfTY2U+6vQwTjONxebkT5DArov0Rql/YT6GPoiCL1OrEd/i7kRgB+x0LttNNXUM0FQKylbhMQECedG019uywbiUvdF4oNc6Wcg7EJZqR+duRQSO/9o6AMhZVprHVvE/DTbis58mVo3kEbQo8ymzq7vgIRjx+CA6F3+kPfUTR1EQWHrLRVibiahQepwokedjgAme3RizQeOm/l3fSEMem3DS7CzojLuwMm3JvuAY6YxQ6I5P20DE6oGPMU3FWC+F3WhO4XMD56WjABqU2DKV2DZRaXrMBC3Ep1iyUWiNPJfglKLUxKLVM9poflQvLgGFmbqv0Te6ExSV3fsyYMd5XSl7ezExcauRiD8hFb96dcGHBImjEwt4fxw2hS7vFJAGLrRCXygRoq+nBrYK3mvSitcnu6FaTF/DKrlDfxKXFzZddiuFVAfd+lXBShawXYD0Xw7+x27GduzAsuoV7sOYqbHLRyUBc4nJUJ8asbi08AHZ94vpgQU7wXobZO0gz7AkrccNu6yJfdqOYpwYPqSSj5kHIYwtLhPuAJYaW5t9kIS4xN7BcCfs1Gc88yIC4jCCsaVh1OjRVKAyw+pTjkaexLGax73dR+8YOmrcUSgAsFFp/FaB5zUOYI+aDOQGftNDzIYodhzsGwT1lGtxT2uCecp7S+Ey/i7AjXQg7coy/hzvHHIQLuSUVLkSQkvQC7TwvSm1vIOwINq/maWG1DigHEYQ3OaYBBcum76uWTbBsiMK1JnQYLmI27eIvkoMxCnYF6ZHjB2jqmQibUt9A3X2rpat4MeddmdbdH2mgFgjE0ZoldG2vhbjE4TamNY49uBN7cBB7cINJ4fUvm4kTM91VnH1F+fIJ3jFUq/6+4Rn8PaTEAJnbjDghOAjacEsln/wiAGW3oQX7ZbSGllzba0tcus4Za+uE0IQ/HTiQWQgTQhEGmwW2OMYXLoR0gAU7/H+kPeVu4Sq05ReCXJbuJvNCP6eLjHJNJnmXl4ibLMsNB8wRyMiRpwAr/goPRoKXo+6GDC9IuGHC0FP9HRGz4KaJ4dFUHhvishcWU91NQ4plkE/iUpeFcfHcfB8uldHHe1CGJnvpMnWtsi3oz/pRZDDAhjaToKuqxOUQbvZn42Z/P272AYv6KAY98cB7qjGOQjAGaQPFojj/JzVSr8XiMi/EJRQiE6mSy8UiyxohAiqJBQ6DrWVzNY+Et+p4nAsWMi9jYx1IQNGueIDec7KoFPUtoRqrNWLGCs39t3/dyzvpX2pYCo8UtX1VaJ9Z9zQbwvWGWQcwWi7DkwFKbRxKbSeOvyCU2gZTHx1ISMvFhjDCg8zkGNaHm2/CcATcVkbMC/eC7ipeTBdxfTuOtlJD5zzVlBjcvurirbmKaxNmDx+2ASiaiINQhdPYLuaAKFOw9QGqfWkIFpLOLHJyOE6h1nYa6OilLmGCq1l67iFEE6FAKEbb91bh4IdyiuB7qRiX6QOV6GqnScuqYZSpmD/Lxx4Bv8QlW+SFYPEYh+DFdrOa+3b1s7DMgyys6UBTV8DFGNZzsNhWiES8j+EXYwE5nBbGQWRBSOTwE1xGG1zAW0B2ihtPB0GM38N0owB/p46pF+ISxrrUirq19sBghZZwjKOlkihzWxcJEImTlgnDZmUNJTA0+G8N/qQJ+GKdK7GWcHFnjmFooxdb68VyJSxXWGuXWHwpuXGMGIGhLoQeeb1FtbJMUBesLzuqXqKhOw23oAMQwrbGqOnbXRT+b9hZksMU39JC136KGH/stp3p97cRfuRJKN/fhDtHK7tgDVAUwlhwbJQGfqC4UQniEjGbr54WhZsX3L0+Vd9hFxgENuP9LM3i8lMINr9A+JLJL+BMwjeY5HFsdNe+DzcyxLsSRDziLLT9KkTVi7tw+41zC+dYMHotPXyCaL2McTni+TOqChAk1QCFBjqpuhPz1UpcJoaxB9eoezCEZQtx6Vs2E+BaNmhBWmKzj+MAEAet+jsuAxA/CAc1VsoQDmElfhA2fF458skPAjAkaGihgdAAdcJVbgwCkqe5imeaM9aGsdDEAejvR8wdjgfDQakRoomGQVaycMXBpjnGSxPHeNmDPyCnMwpt+el9Pkp1k3lFN9F1jcTLJO9mhAXLiOFLsK4EGYfPoX7IxQvxpwewN+B3jppSEwV5iaHgR/x+D9Gz8HQRRlFpxCUbl0SpHgykkMt8EJfwphT902TvAdTbtBLeMwZZ2CRT+yg7H2NVlDJZ9gi1UvtAB/VCMMWJDh0Ge/Gw1ZvQagmZpMRwkqprlEELg/W1EpdMXgTntdFQSHM7VcOjuYY1c3EVVxWiDofwbEXBT1ZqQEAxBOsK7KducBo5m0fCcjNO9d/HTBPxNDkuK/KDhNuFTu348MVn43AaLyKIN4ssYSpD1NdFAZii+4tPb+6/fbu8vGP9EnpE+yTojOqaFBxTJ3RPS/tEf+0v+5QSEzQMpbZGVWpbcWtlJi6VtdcJpZbHL/U4rG+3uW/CMHtuq5SWl+4qrsW5LK7lJfv7t8Lf/2UVo6vp/pegUDYpK0IsvthiWtoUxE0hx51MQlcLUeu13dTag43ZYknTH6mnhYj54XwrxPFC2qmzd4Berm5XY2uKmsTmH1u8lJqCSL6D4HtV6qFybXcr9cCN3FKV0l7EAwo2NCLWhIxxmWmSOwUqN36HXErKze6QYoHXbiGmhByM34X7tipkbTK+g+9g1U4NagxD8T6EOXhL2D+qsGQXbHzq1SBIo5Cz1T0kI3GpltWiyt9ahZiStBplSAs/hzHALTyPeTd02LQYl/jEjbhss+Z4yEBcYrki6QAEeBnjMtNyLcPfcUD/r9kUmZ6Ka5n4f7hU+vcqeuE+LYwHbh+fgGU9woyYyEy9t15+r6UlyU766AetqVADwtIzRPUr4AKG/UYhLu+nl+43uHeIWJT4u/EdQ4xLM+mqNQiC1k8W0kAD3HT+ezXi/uB8ez9kqjuJ2Fjjtz8iicsynLHFazIHh2+Ay5MSTkfIWVbi0tA4O2XDr2ymFKdt0Di0a8CatOHvXbhZ1IUr9fcN2s2i2gi+bQrhIDXGBSkeeBVZM8ebb4AXkogtZquE+ZszAiQhgEGWh9urvlkKgQjMmVEow/yjftxIaxaarkJb+cDvGOMS07wN0CCMoRJDHXJrJnk3kywrPEnABcOb2NbTzNY13UoWWolLtpqCC2SXFtfQRV4Wo6JZSoIkha5P9ZZlzGGCVmI6pFlcQvbzQ4qWzwxwbinnc2jv7KWBl6upHZc0Yb6k4R0yzVKL/9XZhduRuMRXSbDF7a0rheE6P3NXbKIu6MfOiU9ckt1CIboPClFEU4gqYRAqqA9D2CBmB6roWTU/SK7mkZKYZwh3T10Uwhyt4gt1cDauvIgykYUVtTUsgTtxqbilB6qedY9xaTNu1v7bDa2Xd6zfKYnqEIdTy6kiiEsYL1g9bDMSl4aSRRn2xGUMSq05yZZf4tKKYZbcVomtjRKKcakEDA3AxjGOK0Jm74fjQRMpKRZfBAqgxb9fxBzALaDZXNYfmz4Ec/zWjgSFxEJXBjdyPxRaU4wC/DuC7/VGrJOJR1Vp/01DiP3kRGyW2OAXszl+LS65reCOqReGFgNwcemFAUYc/PZhTThShSzdSk85303ZyUUiGFjyNcBNpaMDwiFIBb441h+HW16uFxeh9DBkCVshSy3A2KcqCIyTrk2PxchWmEjQKYlLh8nHRjc3DQG3boP+at7jzS5VhnH2RVyiDixXwnK1JUiLuTZk3TlA4HXc1P4f3NTeZrgJZZcJZBhP/FfE2QHxxxFTw+sQd2cxXK5URcFcs7ffexchzvF1tYZPodSHEZv5GzgnrgMRxMTlKdzQGi092arf+o5OXCIoONzHl1XDtQSB+FOPQqQuGcv/XitczDtrcSNrTMsok/PkYPKMriJYgG8AGagFwM+auPQsm2n4qof2CrhJbEWW0l9abvnSTb6UD2V8j/xOUFi1tjbg8kVLimmjhPmdM6LBpptmtQt2N8BMXII4F4GvMwpt+YUil6U7XdbDPoLaIYeIBD3G3d5F3s0EC0OH5LMIdeXeg2HI0/2QRwfUO4OXQWrpBgMW4pJJhg54CeiKtFerSDvZHM1yzSrutexcDlAplDWEmHrI2p4IGS6RTC6m3Ej/xKWSQKuLmjTCiT1DMOFgAoSoHEY3dCMIDvVoRjxQiJwSdpUClKO1DcpYR6j2mV5wEopcmivi0h5TLcyfHS+ifuGbuOQwf03ge2rpGS2psscBteu/9VMv76RVh3OxreEm6Iw90BkbFO6gpIlLOwyz4bY8Al/A10qHuIQvQQ18CcKWTEzCahLxw/Yji10CBOXCNIJSTbZjNTcW5rG4YTIGPnYFVjGhjcB0ni/ywzULbQhKpwNjCObDTbQMJv49IFvdXMkLOLYlXZVf4lK49IIMvBo30q0Q8Jrwh8dppcXi0pRt2kb44SQvYRh3xKAnHZ5KtAJlhPBH3Dq6CEsiXiI8mJ6FVR97qGWyuCTcdptiFqX2b5Dskri0m5xijCFE97DRjYPbQTau4tqY6XUOQVHA/MFyxW2hTMpT0htFlo0T1oh7/2r/9bmbaP+/sCsWDvF1uAZ2dKv29jtHf7B7rv6mQioqMS6tJKQS2zJWZyA3DcSlOe6lpfRpTIJWUQRt712kfJ96MrU5S0DlZ5WJAJNUMM1qM8Ssyoa47Pcjm+lIqowGu4LfV4tDFT+ALEulD7WafKkfikMAf6TbQh7mpGKhEWszJJ20EpdZzBnR0GyIS/7OVWjLAwR5KtJV5rXUmVHezQCLnXxqqkKVgeKQe1sgU7M8zRf5gfmQvTRPJ9Py4yQUrSBCDReBHslFW5mN229ZxqPeVVwdIBF2I9IqPAWTLq7iAbiSpWd2trPI4uzIF1FHrcUQBzGZ2hGTqVokmzWZcGgbrXBXvcmaVZx/VePmDUO41pLe5mnZyGJ9IMCEXEtrhGoiKdKSP3dzFfc+j5wa4kakq9+4uYojRIiWFFl5mwm3FmqN1FAkC9LSrv/Gljth5AozLhTam5ZBZ+yBzpiKX68Ql06u4v3gC9gQLsMAulhcOrmK92dcd04YwhjDF7flY/IV8NXSIS49MPK1bKaMOF/WQKR25saKGbB1Qbgha1x8tWKjj7ZabxBsFigiXEfBgqxkS0tJWnqeun6ISyYNa0EaRiwZoe1cxTMRl8YGDoAgC4K86sXttMg87SaIqUIcYl4jaVNm4lJaXHqeCnxOYQ2BhIYw7UZacolOQnCQc4t5SM7DAemZtGRLS0la+hijcnqV4znBsnJYt6xMNZ5dPWq34/C+LY6YOQrJ52xxOdLflXrtiUvF7bu73pm4DCAb+vAtMJuxfRTiM83iEm7qbRuXUb2McVlOM7ZobVVkJ7vgKNwkJIqySTJoJ28JFzKPslmqs+qhKiwtoThzXJcaxD8U/rJi5ShZOkyHOv7ZGhCwaOhVYMWqEuU4IyAAcXomv3NGIJUtcWmEOU1oK58x8EpcepJ3Ld22wtIFDyEOGepkcclheJZAFsJ9RcqVfEgNrWRHXDJR1dAPK1w1vjLX75G41JaxyRuKlzFk7oWGS3xJXCqDatxfa1iPhUWke3Ie42SwJy6ZgPTvdurfsrN8VmPltTSBRd2yJGqytNR6KfiQEc8jJ8yUeSII0PYB4facOj9UGSKZfkHKpaUn5+FwgS20JGpnaanMbaOhwHpDQhu3/mst9/KOtZcixAIC8rKlpYm0VGWUoCqjuCXncZ1ttsQlpB8otcLgwZJxNoCMszVq8i77ct0wVC4xPHFbJbxESoe4dAjCOtDZRPNx/SiygsNFqGV2N3UgRo4IHi0euM8FEWcsoaWnV/8NaYaXIHbZ55H0dPT21gFmc2eO8TO7uwPheAyxy1ghBoOWiCLGWAsaoJKWweEAQjM5xL0s4cEvZtP8EJeCrIoQ7YGQg0th5VHj5jxlcRX3Q1wqG6chq3Qmi0sQnD14h5037WRwcUuOdglDkCHcZEMPg+GCKaiwjHFpmXUqaRkErqbwZg6T04m4RDguBB83hz3jOdaK8RCkNO8UKmmJ5SpIS7s75mKuCVl3bhBQyMlh6rwX58Rk63xTSM34XI59WUtxJOxptybs0T+BlUk2v38KJe9nbVTVrGQwF8Tl2xvUJEFq4XyWPYUs46oruzU5j7AYfRueBsIyVHuUuJ2xuv0UhyWnfYxL7vvDFJDEZW4m0ygsJRuLSz5IvclmRkAtt4GCkMSBLLKH8O5sJDb1kx+3XCA2OaOIjHFZmNnpIV5XpjkjGpoL4jJNaCsMBLmoxStx6UnetWmQUZYd5qWEi3mnGJc8FLyEeiE3aY+WFNHWVRyNr+1uoiERdF59vBKXkME6EONynjXGJepfiWU+amNcCi/DXopYLoeElyFIKGGgI/TifgoZdV5BdEC2sXgnKqNiR1yytewkuhZyjkkfTiKD+fh2WFxCTsnK4hLtg0JknBK5WCeyDP8IKIRcjOY92w1SKiUx6iXlZB7xZQO8XpHAz8qLBGoh78ac5hG3QuFX+kMI06STNwrhGUUCmrhIQKMSbrF59Gw35rdNN5yQydh/Lj0TRjaFK6RlkIYDXYK0TNcZlbUVxObWLzL8qqsQOLUmYpZQgw6tdyAuE1BqJ0GpNeVowT5cA6U2ZgmXaNjFFeLXBUNP3Jb/KVjQL0qHuMT1XRfS3HUYYlwm4BbeBrPn+tiAurEqPvut/R1qHMwkDcGNvG1ZP4Kl9iqZocWjuLukm9lqP3OsArAXMKeOQnk1Jt7ZicktEqUhc0e4qZX6O+LIyldP1Um4gyPL7LJ+ZHVFAoR6NmfGRG6Mt0DODtsn6ynoUJZXZX6IS+x5OLxBAmo3wRCEohC4VsLdm5Dd7CO4flfbGWdYBCsR0x98cxxEFifzYvKTk1uCn8bGib87CGJajEtMO+U9PNi7aT7+vADhUCQ7BVnZjt9fhlynCWKCOEPbtazieiZFxNiUWazVDR4EYiMw1HXVDNPYibhMAucmjGUbyuJ9gJOTtnByUo04BkHKAhaWq4itJEnL8tovvLdWyR6+jJ41J8zRC+A4kbjoginKzgewj1uzhp9KUD82ioWDsNYP4CwYsmQdT/u9k5q2RmneoiiFr0NW8VNq9u9Eh046alnFm+d2UewGuJloWcXPg2Cjxr3s3wKBENrm/n9BMoxkFVV9CqViYzsNzYnhjGqimrEJGkAc5qa/1lDsR8jqeh469L7yTkLLaC6zinufJvJNRwQykVD2AfW9ymbGai3EJZves3UBB+gTmdnU36c2Y+OOQQjA4S0OUfwWxS0UXx7LJ/8IFJO4zCi05b/7uarBK3HpRd5F5Cx3WZbJQnD9xqziOB6ohb+DrFSL5bQQfzQPlwT+rQOy0dbDEKk1o2eDTF0FMi1aD5LNSHB5JS4BoLiTQH0IsSjkZS9ZxWEYRLWQ+TkPV1VFCmxaXgfEmYwizqQx2ayW/EPVi8PVnRTrREJa6KExxL0O1EB2sDHKcUrOkwRJ2oTszHqMS1Wf7RhOZTBPn+cZYlxCIRIGRblaILKc7BAQoTtuInrGEN4jrSSFXxnpPFIuKDup9tkYwuoxd6LwIh2JgEusVKUx7JVRH66mzhhcq2vB3SAhVUMA8ixkbN5WhFWo6Aa8hvxMKi/99/KOFTM12XK8pQc6ox1pqXwg1lYLEvZARglARkl0w11/CQzsbC8WbIbYgbhEweCgWpCoNk4xKLXVUGrDUGq7odQqRG/64wnDjNxWdtOwkF+VEHEppjZ1R4IUjDxFOw4QzVp8GwUiEZggGwVUKHCxEAVCMdq+9zDNar6PwpEQtc0zvpM581JyIEbBQIhi2/ci1uFcam4LIVN5mznDGgIYxxAAMRTbTnsPz6Lm+8IUCeEdrioBpRHZV37lMFpGE+ZCDmi51OWLuESnMFwEHoG2i3kBIQv/3zQE0itKuJGATuOBuGSiElOHIhCeeH5h2KkV5YTb1TiHqiBmdZPS6gvgltooP4EzpyDatRf/eBv+H3uwEM6MobfAvVM7iDJO5LcCdbWhjmWYPyIT+mh/1Jt45zWkZpU34OREXPIrCcyBDowlZ03kMQuCWOYA9eI3CO2cLMnpsXojjvahKdv+i4zey6gKbuKcedv2YUuH5yLU3qxYRCawuYSex1lwHGcB4SyYij3/hg5qUK01M/2eHOyiyPMIc39M/X4azpI2nBNMLuIRxOX7G+gZJH0L7duKvWAurZgTpc5bDLFy3ka7cRvz1Jc1tEHNNE7v91Ln70IUPrydDtAsWvy1AMoN6O0ShQ/FKYyNiOumM1dQqKGJ4v9+DzVIi8uyncLFbnh2xKXYZT3IZsbeWYlLdaOeh406zDdOOCzZDetZsBdQcsTGPheJfKLY2GUg8cJNk2ISlxmFtsLBMNKaPBOXqCijvJtJluXGYvlAnSKoUzg/iKBOURB/bwWhyXcEMfx/8BHzb0NYZuDQFGNmXaYeooEmnJldnea7Agd52YiTbr2Jf+yPor6QIsNDbYOnAxIx4v7BKeEly85tq9E+zThhpANQit/DDSgW1HTMqTS3uY1CkTD0WYOmob4TfARygNBVw9SJGJi1tv1x1n2FHJNJ5zWV6ZBVHML1bVDAglCInDOSlyLYldkmYaG72iGe+9JnUqH1cjSPrNzJikCEwrDys5+PRsyT2NeC0OMfwR6gzPVwZ0S1rFQsMp274Zz4x0v/h71iZGiusHi81lE7NWVIZyO7Dij6W5mTwkYbRL86+KJVfeyTI6k/OhGX/DOU2giU2jBkn8O87qDURqDUaiWLS2SEAFDCJ/rA0I3bKoNlUmLEZRkgJpsoERgBAuzSzEYlfGMuH4mARKDyEbC6gVd+j2UPJQISAYmAREAiIBGQCEgEJAISAYlA7hCQxGXusJQlSQRSCLAVKNzbm+B2w+7ofH/KrjqtICyDVSy+8wAAAKNJREFU+C1jpjGJpURAIlARCEjisiKGUXZCIiARkAhIBCQCEgGJgERAIiARKBICkrgsEvCy2spHAF6cFIKbePxlgguqxVWn8rsveygRkAgAAUlcymkgEZAISAQkAhIBiYBEQCIgEZAISASyR0ASl9ljJ7+UCEgEJAISAYmAREAiIBGQCEgERjkCX331FY0ZM2aUoyC7LxGQCEgEJAISgfwg8P8B6VCXhSVgq5oAAAAASUVORK5CYII=" alt="" />

 type
point=^node;
node=record
g:longint;
next:point;
end;
var
i,j,k,l,m,n,t:longint;
a:array[..] of point;
b,c,d:array[..] of longint;
c1,c2:char;
procedure add(x,y:longint);inline;
var p:point;
begin
new(p);p^.g:=y;
p^.next:=a[x];a[x]:=p;
end;
procedure dfs(x:longint);inline;
var i,j,k,l:longint;p:point;
begin
if x>n then
begin
for i:= to m do if b[i]> then exit;
if t= then
begin
for i:= to n do d[i]:=c[i];
t:=;
end
else
begin
writeln('NOT UNIQUE');
halt;
end;
end
else
begin
p:=a[x];l:=;
while p<>nil do
begin
if b[p^.g]= then
begin
l:=;
break;
end;
p:=p^.next;
end;
if l= then
begin
p:=a[x];
while p<>nil do
begin
dec(b[p^.g]);
p:=p^.next;
end;
c[x]:=;
dfs(x+);
p:=a[x];
while p<>nil do
begin
inc(b[p^.g]);
p:=p^.next;
end;
end;
c[x]:=;
dfs(x+);
end;
end; begin
readln(n,m);
for i:= to m do a[i]:=nil;
for i:= to m do
begin
for j:= to n do
begin
read(c1);
if c1='' then add(j,i);
end;
readln(b[i]);
end;
t:=;
dfs();
IF t= then write('IMPOSSIBLE') else for i:= to n do write(d[i]);
writeln;
readln;
end.

2102: [Usaco2010 Dec]The Trough Game的更多相关文章

  1. 【BZOJ】2102: [Usaco2010 Dec]The Trough Game(暴力)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2102 直接枚举所有情况......然后判断是否可行.. #include <cstdio> ...

  2. BZOJ2102 : [Usaco2010 Dec]The Trough Game

    暴力枚举答案然后检验. #include<cstdio> int n,m,i,j,k,a[100],b[100],cnt,ans;char s[20]; int main(){ for(s ...

  3. BZOJ2097[Usaco2010 Dec] 奶牛健美操

    我猜我这样继续做水题会狗带 和模拟赛的题很像,贪心搞一下. #include<bits/stdc++.h> using namespace std; int read(){ ,f=;cha ...

  4. BZOJ2101: [Usaco2010 Dec]Treasure Chest 藏宝箱

    2101: [Usaco2010 Dec]Treasure Chest 藏宝箱 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 327  Solved:  ...

  5. BZOJ 2100: [Usaco2010 Dec]Apple Delivery( 最短路 )

    跑两遍最短路就好了.. 话说这翻译2333 ---------------------------------------------------------------------- #includ ...

  6. BZOJ 2101: [Usaco2010 Dec]Treasure Chest 藏宝箱( dp )

    dp( l , r ) = sum( l , r ) - min( dp( l + 1 , r ) , dp( l , r - 1 ) ) 被卡空间....我们可以发现 l > r 是无意义的 ...

  7. BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP

    BZOJ_2097_[Usaco2010 Dec]Exercise 奶牛健美操_二分答案+树形DP Description Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的 ...

  8. bzoj2101【Usaco2010 Dec】Treasure Chest 藏宝箱

    2101: [Usaco2010 Dec]Treasure Chest 藏宝箱 Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 418  Solved: ...

  9. BZOJ_2099_[Usaco2010 Dec]Letter 恐吓信_后缀自动机+贪心

    BZOJ_2099_[Usaco2010 Dec]Letter 恐吓信_后缀自动机 Description FJ刚刚和邻居发生了一场可怕的争吵,他咽不下这口气,决定佚名发给他的邻居 一封脏话连篇的信. ...

随机推荐

  1. 在MyEclipse 2014中给Spket增加ExtJS提示

    参考:http://wenku.baidu.com/link?url=BT2U6Z-HktQJQYpz3Jp88pJSp4lU-lXkvCqpdeaa9a-BVdOgMGK1vj486-32YC4Gq ...

  2. UWP必备知识:App File Explorer

    由来 应用在手机端出问题时如果查看LocalState文件夹的数据库文件与日志文件 如何查看应用在手机端占用带宽与占用CPU内存情况 介绍 [UWP开发之Mvvmlight实践七:如何查找设备(Mob ...

  3. DotNet加密方式解析--非对称加密

    新年新气象,也希望新年可以挣大钱.不管今年年底会不会跟去年一样,满怀抱负却又壮志未酬.(不过没事,我已为各位卜上一卦,卦象显示各位都能挣钱...).已经上班两天了,公司大部分人还在休假,而我早已上班, ...

  4. volatile关键字解析(转)

    volatile关键字解析 转载:http://www.cnblogs.com/dolphin0520/p/3920373.html volatile这个关键字可能很多朋友都听说过,或许也都用过.在J ...

  5. ArcGIS制图表达Representation-符号制作

    ArcGIS制图表达Representation-符号制作 by 李远祥 在ArcGIS的符号里面,存在着两种符号体系,一种是传统的标准符号体系,一种是制图表达符号体系.标准符号几乎被绝大部分ArcG ...

  6. 使用jsCompress压缩混淆js代码的一些常见的问题和技巧

    不同的团队使用的js混淆器或压缩工具不一样,jsCompress是一款绿色的免费的js压缩工具,时代定制的UI团队推荐大家使用,不仅性能优越,而且操作非常人性化. 使用jsCompress.exe时, ...

  7. 测试指南(适用于Feature/promotion/bug)

    1.提前了解需求,在需求的业务基础和开发的架构基础上分析测试关键点,给出测试策略,甚至需要准备测试数据: 2.分析需求时不要受开发影响,要有自己的分析和判断,包括测试范围,测试时间: 3.在开始测试之 ...

  8. 通过映射关系 动态转义为统一格式的数据 (支持 JSON 和 XML )

    在很多的时候 我们都会 需要 将不同格式的数据  转换为 统一的数据格式 比如 将Json 源数据 { "b": [ { "c": "referenc ...

  9. Python,datetime模块实例

    Python的标准模块datetime模块,在我们的工作中应用非常频繁,下面对datetime中常用的方法进行了总结和测试:对每一个方法都使用了单元测试框架Unittest来配合测试. 主要的类型有: ...

  10. Pin学习笔记--安装及一些基本知识

    具体请见用户手册Pin 3.2 User Guide https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/ ...