Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

InputInput consists of a number of test cases. 
For each test case: The rst line contains a number k (0 < k <= 100) describing the size of S, followed by k numbers si (0 < si <= 10000) describing S. The second line contains a number m (0 < m <= 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l <= 100) describing the number of heaps and l numbers hi (0 <= hi <= 10000) describing the number of beads in the heaps. 
The last test case is followed by a 0 on a line of its own.OutputFor each position: 
If the described position is a winning position print a 'W'. 
If the described position is a losing position print an 'L'. 
Print a newline after each test case.Sample Input

2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0

Sample Output

LWW
WWL
题解:可以当成多个NIM博弈,最终答案等于每个NIMA博弈结果的异或;(注意求SG函数时,不要每次都把vis数组清空,用一个t标记即可,每次改变标记,否则会超时)
参考代码:
 #include<bits/stdc++.h>
using namespace std;
#define clr(a,val) memset(a,val,sizeof a)
const int maxn=;
int num,f[maxn],ans;
int l,t,cas,SG[maxn],vis[maxn];
void GetSG(int x)
{
clr(SG,);
int t=;
for(int i=;i<=x;++i)
{
for(int j=;f[j]<=i&&j<=num;++j) vis[SG[i-f[j]]]=t;
for(int j=;j<=x;j++) {if(vis[j]!=t) {SG[i]=j;break;}}
++t;
}
} int main()
{
while(~scanf("%d",&num) && num)
{
for(int i=;i<=num;++i)scanf("%d",&f[i]);
sort(f+,f++num);
GetSG(maxn-);
scanf("%d",&cas);
while(cas--)
{
scanf("%d",&l);ans=;
for(int i=;i<=l;++i) scanf("%d",&t),ans^=SG[t];
if(!ans) printf("L");
else printf("W");
}
puts("");
}
return ;
}

HDU1944 S-NIM(多个NIM博弈)的更多相关文章

  1. NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结

    NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结 经典NIM游戏: 一共有N堆石子,编号1..n,第i堆中有个a[i]个石子. 每一次操作Alice和Bob可以从任意一堆石子中取出任意数量的石子 ...

  2. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  3. HDU 3032 Nim or not Nim?(博弈,SG打表找规律)

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  4. HDU 3032 Nim or not Nim? (sg函数)

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. HDU 5795 A Simple Nim(简单Nim)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  6. HDU 3032 Nim or not Nim? (sg函数求解)

    Nim or not Nim? Problem Description Nim is a two-player mathematic game of strategy in which players ...

  7. Nim or not Nim? hdu3032 SG值打表找规律

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  8. 【HDU3032】Nim or not Nim?(博弈论)

    [HDU3032]Nim or not Nim?(博弈论) 题面 HDU 题解 \(Multi-SG\)模板题 #include<iostream> #include<cstdio& ...

  9. hdu 3032 Nim or not Nim? sg函数 难度:0

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  10. HDU 3032 Nim or not Nim?(Multi_SG,打表找规律)

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. windsServer2008设置定时重启

    点击“开始”——“管理工具”——“任务计划程序”. 右键“任务计划程序库”——“创建任务”. 输入计划名称.描述和安全选项(如下图). 点击触发器,点击“新建…”,输入计划周期和时间(如下图):无误后 ...

  2. C++中对封装的语法支持——友元

    友元 1.友元就是授权给某个函数.每个成员函数.某个类具有访问类内部私有成员的权限. 2.为什么用友元?友元可以允许某个类.函数直接访问类内部私有数据,减少函数调用开销,提高效率. 3.友元函数不是成 ...

  3. 如何在 PHP 和 Laravel 中使用 Traits

    事实上,PHP 作为一门编程语言存在的问题之一,就是你只能使用单继承.这意味着一个类只能从另一个类中继承.例如,可能希望从几个不同的类继承方法,以防止代码重复.在 PHP 5.4 中 一个新的语言特性 ...

  4. Python Excel 绘制柱形图

    本文主要讲述如何使用Python操作Excel绘制柱形图. 相关代码请参考 https://github.com/RustFisher/python-playground 本文链接:https://w ...

  5. 《JAVA 程序员面试宝典(第四版)》之循环、条件、概率

        分享内容:关于集合的使用   书页号码:77页 题目:一个字符串中包含a~z中的多个字符,如有重复,如String data = "aavzcadfdsfsdhshgwasdfasd ...

  6. Vue使用element上传

    <el-upload action v-if="IsUpload" style="display:inline" list-type="pict ...

  7. Redis报错: StackExchange.Redis.RedisServerException: Endpoint 39.105.22.111:7200 serving hashslot 12448 is not reachable at this point of time.

    emmmm……要下班了,简单记录一下. 如果是127.0.0.1:7200报这个错,请移步 https://blog.csdn.net/foreverhot1019/article/details/7 ...

  8. vue学习笔记(八)组件校验&通信

    前言 在上一章博客的内容中vue学习笔记(七)组件我们初步的认识了组件,并学会了如何定义局部组件和全局组件,上一篇内容仅仅只是对组件一个简单的入门,并没有深入的了解组件当中的其它机制,本篇博客将会带大 ...

  9. sql注入问题回顾

    (以下语法均为在python中使用mysql语句,部分代码省略,使用python中的pymsql模块获取游标对象即可直接执行sql语句) sql注入:在传入参数的时候做出改变,使得插入数据这条sql语 ...

  10. .net压缩文件

    首先nuget安装DotNetZip 代码很少