MapReduce案例-好友推荐
用过各种社交平台(如QQ、微博、朋友网等等)的小伙伴应该都知道有一个叫 "可能认识" 或者 "好友推荐" 的功能(如下图)。它的算法主要是根据你们之间的共同好友数进行推荐,当然也有其他如爱好、特长等等。共同好友的数量越多,表明你们可能认识,系统便会自动推荐。今天我将向大家介绍如何使用MapReduce计算共同好友
算法
假设有以下好友列表,A的好友有B,C,D,F,E,O; B的好友有A,C,E,K 以此类推
那我们要如何算出A-O用户每个用户之间的共同好友呢?
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J
下面我们将演示分步计算,思路主要如下:先算出某个用户是哪些用户的共同好友,
如A是B,C,D,E等的共同好友。遍历B,C,D,E两两配对如(B-C共同好友A,注意防止重复B-C,C-B)作为key放松给reduce端,
这样reduce就会收到所有B-C的共同好友的集合。可能到这里你还不太清楚怎么回事,下面我给大家画一个图。
代码演示
由上可知,此次计算由两步组成,因此需要两个MapReduce程序先后执行
第一步:通过mapreduce得到 某个用户是哪些用户的共同好友。
public class FriendsDemoStepOneDriver {
static class FriendsDemoStepOneMapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] split = line.split(":");
String user = split[0];
String[] friends = split[1].split(",");
for (String friend : friends) {
// 输出友人,人。 这样的就可以得到哪个人是哪些人的共同朋友
context.write(new Text(friend),new Text(user));
}
}
}
static class FriendsDemoStepOneReducer extends Reducer<Text,Text,Text,Text>{
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for (Text person : values) {
sb.append(person+",");
}
context.write(key,new Text(sb.toString()));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
conf.set("mapreduce.framework.name","local");
conf.set("fs.defaultFS","file:///");
Job job = Job.getInstance(conf);
job.setJarByClass(FriendsDemoStepOneDriver.class);
job.setMapperClass(FriendsDemoStepOneMapper.class);
job.setReducerClass(FriendsDemoStepOneReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job,new Path("/Users/kris/Downloads/mapreduce/friends/friends.txt"));
FileOutputFormat.setOutputPath(job,new Path("/Users/kris/Downloads/mapreduce/friends/output"));
boolean completion = job.waitForCompletion(true);
System.out.println(completion);
}
}
运行的到的结果如下:
由图可见:I,K,C,B,G,F,H,O,D都有好友A;A,F,J,E都有好友B。接下来我们只需组合这些拥有相同的好友的用户,
作为key发送给reduce,由reduce端聚合d得到所有共同的好友
/**
* 遍历有同个好友的用户的列表进行组合,得到两人的共同好友
*/
public class FriendsDemoStepTwoDriver {
static class FriendDemoStepTwoMapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] split = line.split("\t");
String friend = split[0];
String[] persons = split[1].split(",");
Arrays.sort(persons);
for (int i = 0; i < persons.length-1; i++) {
for (int i1 = i+1; i1 < persons.length; i1++) {
context.write(new Text(persons[i]+"--"+persons[i1]),new Text(friend));
}
}
}
}
static class FriendDemoStepTwoReducer extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for (Text friend : values) {
sb.append(friend + ",");
}
context.write(key,new Text(sb.toString()));
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
conf.set("mapreduce.framework.name","local");
conf.set("fs.defaultFS","file:///");
Job job = Job.getInstance(conf);
job.setJarByClass(FriendsDemoStepOneDriver.class);
job.setMapperClass(FriendDemoStepTwoMapper.class);
job.setReducerClass(FriendDemoStepTwoReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job,new Path("/Users/kris/Downloads/mapreduce/friends/output"));
FileOutputFormat.setOutputPath(job,new Path("/Users/kris/Downloads/mapreduce/friends/output2"));
boolean completion = job.waitForCompletion(true);
System.out.println(completion);
}
}
得到的结果如下:
如图,我们就得到了拥有共同好友的用户列表及其对应关系,在实际场景中再根据用户关系(如是否已经是好友)进行过滤,在前端展示,就形成了我们所看到"可能认识"或者"好友推荐"啦~
今天给大家分享的好友推荐算法就是这些,今天的只是一个小小的案例,现实场景中的运算肯定要比这个复杂的多,
但是思路和方向基本一致,如果有更好的建议或算法,欢迎与小吴一起讨论喔~
如果您喜欢这篇文章的话记得like,share,comment喔(^^)
MapReduce案例-好友推荐的更多相关文章
- 【大数据系列】MapReduce示例好友推荐
package org.slp; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import ...
- MapReduce -- 好友推荐
MapReduce实现好友推荐: 张三的好友有王五.小红.赵六; 同样王五.小红.赵六的共同好友是张三; 在王五和小红不认识的前提下,可以通过张三互相认识,给王五推荐的好友为小红, 给小红推荐的好友是 ...
- 19-hadoop-fof好友推荐
好友推荐的案例, 需要两个job, 第一个进行好友关系度计算, 第二个job将计算的关系进行推荐 1, fof关系类 package com.wenbronk.friend; import org.a ...
- 吴裕雄--天生自然HADOOP操作实验学习笔记:qq好友推荐算法
实验目的 初步认识图计算的知识点 复习mapreduce的知识点,复习自定义排序分组的方法 学会设计mapreduce程序解决实际问题 实验原理 QQ好友推荐算法是所有推荐算法中思路最简单的,我们利用 ...
- mapreduce案例:获取PI的值
mapreduce案例:获取PI的值 * content:核心思想是向以(0,0),(0,1),(1,0),(1,1)为顶点的正方形中投掷随机点. * 统计(0.5,0.5)为圆心的单位圆中落点占总落 ...
- 【Hadoop离线基础总结】MapReduce案例之自定义groupingComparator
MapReduce案例之自定义groupingComparator 求取Top 1的数据 需求 求出每一个订单中成交金额最大的一笔交易 订单id 商品id 成交金额 Order_0000005 Pdt ...
- 【Hadoop学习之十】MapReduce案例分析二-好友推荐
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 最应该推荐的好友TopN,如何排名 ...
- MapReduce案例二:好友推荐
1.需求 推荐好友的好友 图1: 2.解决思路 3.代码 3.1MyFoF类代码 说明: 该类定义了所加载的配置,以及执行的map,reduce程序所需要加载运行的类 package com.hado ...
- 【尚学堂·Hadoop学习】MapReduce案例2--好友推荐
案例描述 根据好友列表,推荐好友的好友 数据集 tom hello hadoop cat world hadoop hello hive cat tom hive mr hive hello hive ...
随机推荐
- Python编程习惯
- ZOJ4027 Sequence Swapping DP
link:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4027 题意: 有一个括号序列,每个括号对应一个值,现在可以使得相 ...
- 洛谷P1352没有上司的舞会+树形二维DP
传送门 题意:上司和直接下属,不能同时去一个聚会,问可邀请到的人的快乐值最大是多少: 参考:https://www.luogu.org/blog/mak2333/solution-p1352 思路: ...
- 牛客网暑期ACM多校训练营(第三场) J Distance to Work 计算几何求圆与多边形相交面积模板
链接:https://www.nowcoder.com/acm/contest/141/J来源:牛客网 Eddy has graduated from college. Currently, he i ...
- codeforces 454 E. Little Pony and Summer Sun Celebration(构造+思维)
题目链接:http://codeforces.com/contest/454/problem/E 题意:给出n个点和m条边,要求每一个点要走指定的奇数次或者是偶数次. 构造出一种走法. 题解:可能一开 ...
- bzoj 1051 [HAOI2006]受欢迎的牛(tarjan缩点)
题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1051 题解:缩点之后判断出度为0的有几个,只有一个那么输出那个强连通块的点数,否者 ...
- codeforces H. Queries for Number of Palindromes(区间dp)
题目链接:http://codeforces.com/contest/245/problem/H 题意:给出一个字符串还有q个查询,输出每次查询区间内回文串的个数.例如aba->(aba,a,b ...
- poj 3159 Candies(dijstra优化非vector写法)
题目链接:http://poj.org/problem?id=3159 题意:给n个人派糖果,给出m组数据,每组数据包含A,B,c 三个数,意思是A的糖果数比B少的个数不多于c,即B的糖果数 - A的 ...
- Prometheus安装
Prometheus安装 下载地址: https://prometheus.io/download/ 现在时间是: 2019.09.07 安装环境: Linux centos7 minimal 虚拟机 ...
- [NOI1995]石子合并 题解
一道经典的dp题 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子 ...