「考试」 Or
不得不说是一道多项式神题了。
虽然说颓代码颓的很厉害不过最终A掉了。
好好讲一讲这道题。
涉及的知识点是:高阶导数,NTT,指数型母函数,泰勒公式,以及意志力和数学推导能力。
那就开始了。
一个测试点一个测试点来。
首先注意到$b[i]=lim_{i=1}^{i<=n}(|=a[i])$
1.$n,k<=4$ 直接爆搜。$O(2^{nk})$
2.$n,k<=10$考虑状压dp。
设$dp[i][s]$为$a$的$i$项前缀或和。
那么有转移$dp[i+1][s|t]+=dp[i][s]*[(s|t)!=s]$
这样是$O(n4^{k})$
3.$n,k<=300$。
首先优化状压dp,我们其实并不关心状压dp中状态的1是那些1,我们只关心有几个1。
那么得到$dp[i][j]$前$i$位的$a$或和中有$j$个1,且清楚是哪些1的方案数。
$dp[i][j]=\sum\limits_{k=0}^{j-1}dp[i-1][k]2^kC_{K-k}^{j-k}$
复杂度是$O(nk^2)$
4.59分
优化上述$dp$
其实可以看到卷积的影子吧。
设$g[i][j]$前$i$位的$a$或和中有$j$个1,不清楚是那些1的方案数。
$g[i][j]=\sum\limits_{k=0}^{j-1}g[i-1][k]2^kC_j^{j-k}$
那么$dp[i][j]=C_K^jg[i][j]$
可以看出来g是一个卷积的形式了。
那么复杂度$O(nklogk)$
5.AC
优化上述dp。
改变g的枚举方式。
$g[i][j]=\sum\limits_{k=1}^{j}g[i-1][j-k]2^{j-k}C_{j}^{k}$
展开组合数。
$g[i][j]=\sum\limits_{k=1}^{j}g[i-1][j-k]2^{j-k}\frac{j!}{k!(j-k)!}$
那么也就是说
$\frac{g[i][j]}{j!}=\frac{\sum\limits_{k=1}^{j-1}g[i-1][j-k]2^{j-k}}{(j-k)!}\frac{1}{k!}$
可以看出指数型母函数的样子了。
生成函数$G(x)=\sum\limits_{k=1}^{j-1}\frac{g[i][j]}{j!}$
引入泰勒公式。
$+\infty$为正无穷。
对于任何一个函数$f$
$f(x)=\sum\limits_{i=0}^{+\infty}\frac{f^{(i)}(x_0)(x-x_0)^i}{i!}$
证明:
对$f^{(m)}(x_0)(x-x_0)^m$求$m$阶导。
首先$x^n$的导数为$nx^{n-1}$
那么
1.$mf^{(m)}(x_0)(x-x_0)^{m-1}$
2.$m(m-1)f^{(m)}(x_0)(x-x_0)^{m-2}$
......
m.$m!f^{(m)}(x_0)$
在往后都是0了,$m!f(x_0)$是常数。
那么其实$f^{(m)}(x_0)=m!f(x_0)$因为其他项带$(x-x_0)$,所以都是0。
除掉$m!$
$f(x)=\sum\limits_{i=0}^{+\infty}\frac{f^{(i)}(x_0)(x-x_0)^i}{i!}$
得到泰勒公式的结论了。
证毕。
第二个引理$e^x=\sum\limits_{i=0}^{+\infty}\frac{x^i}{i!}$
证明:
首先$e^x$的导数仍然是$e^x$
$e^x=\sum\limits_{i=0}^{+\infty}\frac{f^{(i)}(x_0)(x-x_0)^i}{i!}$
设$\frac{f^{(i)}(x_0)}{i!}=a_i$
$e^x=\sum\limits_{i=0}^{+\infty}\frac{a_i(x-x_0)^i}{i!}$
两侧取导。
$e^x=0+\sum\limits_{i=1}^{+\infty}ia_{i-1}(x-x_0)^{i-1}$
$a_0=a_1$
$a_1=2a_2$
$a_2=3a_3$
...
$a_{n-1}=na_n$
那么解得$a_i=\frac{a_0}{i!}$
回代。
$e^x=a_0\sum\limits_{i=0}^{+\infty}\frac{x^i}{i!}$
当$x=0$时
$e^x=1=a_0\sum\limits_{i=0}^{+\infty}\frac{x^i}{i!}$
$a_0=1$
$e^x=\sum\limits_{i=0}^{+\infty}\frac{x^i}{i!}$
证毕。
推推式子得到了$G_i(x)=G_{i-1}(2x)*(e^x-1)$是卷积。
用$(G(x))[x^i]$代表多项式$G(x)$在$x^i$处的系数。
代入$\frac{g[i][j]}{j!}=\frac{\sum\limits_{k=1}^{j}g[i-1][j-k]2^{j-k}}{(j-k)!}\frac{1}{k!}$
那么也就等价于。
$(G_i(x))[x^j]=\sum\limits_{k=1}^{j}(G_{i-1}(x))[x^{j-k}]2^{j-k}((e^x)[x^k])$
解释一下。
$G(2x)$在$[x^k]$的系数是$\frac{g[i-1][k]}{k!}2^k$
$e^x$在$[x^k]$的系数是$\frac{1}{k!}$
好那么有这个式子了。
继续。
$G_0(x)=1$
回代得到。
$G_n(x)=\prod\limits_{i=0}^{n-1}(e^{2^ix}-1)$
这个形式可以用类似快速幂的方式优化。
快速幂我不知道怎么想出来的只知道是对的。
那么也就是说可以在$O(nlog^2n)$时间内解决。
常数巨大。
「考试」 Or的更多相关文章
- 「考试」CSP-S 2020
乱扯 爆炸的过程是这样的 写了\(2.5h\)的\(T1\)过不去大样例,自闭了 决定调\(T2\)然后过了样例但事实上写的完全是假的 这个时候突然\(T1\)灵光一闪就没再看\(T2\)了 然后就一 ...
- 「考试」noip模拟9,11,13
9.1 辣鸡 可以把答案分成 每个矩形内部连线 和 矩形之间的连线 两部分 前半部分即为\(2(w-1)(h-1)\),后半部分可以模拟求(就是讨论四种相邻的情况) 如果\(n^2\)选择暴力模拟是有 ...
- 「考试」$5T$
啊因为最近题实在是好啊,只能四五篇四五篇写了. T1. 括号序列的确简单. 当我们维护左右$cnt$后. 到一个左括号的地方的话. 答案就是:$$\sum\limits_{i=1}^{min(lc,r ...
- 「考试」小P的生成树
考场上想到一半正解,没想到随机化,不然也许能够$A$掉. 题目所说的其实就是向量加法,求模长最长的向量生成树. 我们考虑对于两个向量,必然在平行边形对角线方向上,他们的投影和是最大的,长度就是对角线长 ...
- 「考试」num (破800纪念)
是第800题啦. 怎么说,$rvalue$学长写的已经挺好的了,我在这里做一点补充,写一点理解. 但是这道题真的值得写一下题解,毕竟一百行也算是数论工程题了. 定义函数 $Fp(k,n)$为$n$中$ ...
- 「考试」weight
正解是树剖. 首先Kru求最小生成树. 然后分别考虑树边和非树边的答案. 首先是非树边,非树边链接的两个点在MST上能够构成一条链. 这条链上最大的那条边-1就是这条边的答案. 为什么. 模拟Kru的 ...
- 「考试」联赛模拟36-39,noip晚间小测2-3
36.1 party(CF623D) 很是鸡贼的一道题 首先要明确一点,抓人是有策略,而不是随机的,可以认为等同于按一个给定的顺序猜人,那么这时猜中的概率就只是抓住这个人的概率了 对于每一次猜测,因为 ...
- 「CSP-S」2019年第一届Day1游记+题解
「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 ...
- 「CSP」第一届提高组考后总结
「CSP」第一届提高组考后总结 问题分析+反思 成绩 心态 考前心态 考时心态 考后心态 方法 心灵鸡汤... 在学习了三年之后,我们信竞迎来了初中最后一次大考,也是第一次 CSPCSPCSP 考试. ...
随机推荐
- IDEA 学习笔记之 Web项目开发
Web项目开发: 添加新模块: 起名: 添加jars: 添加Tomcat/local: 添加项目: 启动Tomcat: 看到web页面: 修改页面: 重新部署页面:
- MySQL-时区导致的时间前后端不一致
背景 今天早上刚上班,就被同事提示,程序的日期处理有问题.数据库里日期为:2019-05-21 11:00:00 而前端显示的日期为:2019-05-21 16:00:00 分析 那肯定是和时区相关了 ...
- python爬虫入门10分钟爬取一个网站
一.基础入门 1.1什么是爬虫 爬虫(spider,又网络爬虫),是指向网站/网络发起请求,获取资源后分析并提取有用数据的程序. 从技术层面来说就是 通过程序模拟浏览器请求站点的行为,把站点返回的HT ...
- 05-04 scikit-learn库之主成分分析
目录 scikit-learn库之主成分分析 一.PCA 1.1 使用场景 1.2 代码 1.3 参数 1.4 属性 1.5 方法 二.KernelPCA 三.IncrementalPCA 四.Spa ...
- Mint(Linux)系统设置优化及其常用软件安装笔记
LInux /home下中文目录如何修改成英文? 打开终端,在终端中输入命令: export LANG=en_US xdg-user-dirs-gtk-update 跳出对话框询问是否将目录转化为英文 ...
- jsonp 跨域Uncaught SyntaxError: Unexpected token :解决方法
[jQuery]Ajax实现跨域访问JSON Ajax跨域访问JSON 环境:.net4.0+jQuery+JSON.net 因为在跨域实现,所以这里新建网站,这个网站只需要Ashx文件 public ...
- ZGC深入学习
ZGC简介 本次调研目标选取的是jdk11(long-term support)下首次亮相的zgc. zgc介绍简单翻译了zgc main page:ZGC简介 另外参考hotspot garbage ...
- spring源码系列8:AOP源码解析之代理的创建
回顾 首先回顾: JDK动态代理与CGLIB动态代理 Spring中的InstantiationAwareBeanPostProcessor和BeanPostProcessor的区别 我们得知 JDK ...
- 关于Mapper.xml生效的问题
昨天在新建Springboot启动后,发现执行相关的SQL报错,具体报错信息如下: org.apache.ibatis.binding.BindingException: Invalid bound ...
- 第九周课程总结&实验报告(七)
实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: (3)卖票过程延时1秒钟: (4)不能出现一票多卖或卖出负数号票的情况. 实验代码 pac ...