Zeppelin0.5.6使用spark解释器
Zeppelin为0.5.6
Zeppelin默认自带本地spark,可以不依赖任何集群,下载bin包,解压安装就可以使用。
使用其他的spark集群在yarn模式下。
配置:
vi zeppelin-env.sh

添加:
export SPARK_HOME=/usr/crh/current/spark-client
export SPARK_SUBMIT_OPTIONS="--driver-memory 512M --executor-memory 1G"
export HADOOP_CONF_DIR=/etc/hadoop/conf
Zeppelin Interpreter配置

注意:设置完重启解释器。
Properties的master属性如下:

新建Notebook
Tips:几个月前zeppelin还是0.5.6,现在最新0.6.2,zeppelin 0.5.6写notebook时前面必须加%spark,而0.6.2若什么也不加就默认是scala语言。
zeppelin 0.5.6不加就报如下错:
Connect to 'databank:4300' failed
%spark.sql
select count(*) from tc.gjl_test0
报错:
com.fasterxml.jackson.databind.JsonMappingException: Could not find creator property with name 'id' (in class org.apache.spark.rdd.RDDOperationScope)
at [Source: {"id":"2","name":"ConvertToSafe"}; line: 1, column: 1]
at com.fasterxml.jackson.databind.JsonMappingException.from(JsonMappingException.java:148)
at com.fasterxml.jackson.databind.DeserializationContext.mappingException(DeserializationContext.java:843)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.addBeanProps(BeanDeserializerFactory.java:533)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.buildBeanDeserializer(BeanDeserializerFactory.java:220)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.createBeanDeserializer(BeanDeserializerFactory.java:143)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer2(DeserializerCache.java:409)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer(DeserializerCache.java:358)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCache2(DeserializerCache.java:265)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCacheValueDeserializer(DeserializerCache.java:245)
at com.fasterxml.jackson.databind.deser.DeserializerCache.findValueDeserializer(DeserializerCache.java:143)
at com.fasterxml.jackson.databind.DeserializationContext.findRootValueDeserializer(DeserializationContext.java:439)
at com.fasterxml.jackson.databind.ObjectMapper._findRootDeserializer(ObjectMapper.java:3666)
at com.fasterxml.jackson.databind.ObjectMapper._readMapAndClose(ObjectMapper.java:3558)
at com.fasterxml.jackson.databind.ObjectMapper.readValue(ObjectMapper.java:2578)
at org.apache.spark.rdd.RDDOperationScope$.fromJson(RDDOperationScope.scala:85)
at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:136)
at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:136)
at scala.Option.map(Option.scala:145)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:136)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:56)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:187)
at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374)
at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099)
at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374)
at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.zeppelin.spark.ZeppelinContext.showDF(ZeppelinContext.java:297)
at org.apache.zeppelin.spark.SparkSqlInterpreter.interpret(SparkSqlInterpreter.java:144)
at org.apache.zeppelin.interpreter.ClassloaderInterpreter.interpret(ClassloaderInterpreter.java:57)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:93)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:300)
at org.apache.zeppelin.scheduler.Job.run(Job.java:169)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:134)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
原因:
进入/opt/zeppelin-0.5.6-incubating-bin-all目录下:
# ls lib |grep jackson
jackson-annotations-2.5.0.jar
jackson-core-2.5.3.jar
jackson-databind-2.5.3.jar
将里面的版本换成如下版本:
# ls lib |grep jackson
jackson-annotations-2.4.4.jar
jackson-core-2.4.4.jar
jackson-databind-2.4.4.jar
测试成功!

Sparksql也可直接通过hive jdbc连接,只需换端口,如下图:


Zeppelin0.5.6使用spark解释器的更多相关文章
- Zeppelin使用spark解释器
Zeppelin为0.5.6 Zeppelin默认自带本地spark,可以不依赖任何集群,下载bin包,解压安装就可以使用. 使用其他的spark集群在yarn模式下. 配置: vi zeppelin ...
- Zeppelin0.6.2使用hive解释器
Zeppelin0.6.2的jdbc Interpreter 配置 1.拷贝hive的配置文件hive-site.xml到zeppelin-0.6.2-bin-all/conf下. 2.进入conf下 ...
- Zeppelin0.5.6使用hive解释器
此zeppelin为官方0.5.6版,可能还在孵化阶段,可能出现一些bug吧. 配置 cp zeppelin-env.sh.template zeppelin-env.sh vi zeppelin-e ...
- Zeppelin0.7.2结合hive解释器进行报表展示
前提:服务器已经安装好了hadoop_client端即hadoop的环境hbase,hive等相关组件 1.环境和变量配置①拷贝hive的配置文件hive-site.xml到zeppelin-0.7. ...
- Zeppelin使用Spark的yarn-client模式
Zeppelin版本0.6.2 1. Export SPARK_HOME In conf/zeppelin-env.sh, export SPARK_HOME environment variable ...
- Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...
- Apache Spark RDD(Resilient Distributed Datasets)论文
Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...
- hadoop-2.7.3.tar.gz + spark-2.0.2-bin-hadoop2.7.tgz + zeppelin-0.6.2-incubating-bin-all.tgz(master、slave1和slave2)(博主推荐)(图文详解)
不多说,直接上干货! 我这里,采取的是ubuntu 16.04系统,当然大家也可以在CentOS6.5里,这些都是小事 CentOS 6.5的安装详解 hadoop-2.6.0.tar.gz + sp ...
- Zeppelin 0.6.2使用Spark的yarn-client模式
Zeppelin版本0.6.2 1. Export SPARK_HOME In conf/zeppelin-env.sh, export SPARK_HOME environment variable ...
随机推荐
- Win10版《芒果TV》获评2016年度Windows Store最佳官方/休闲娱乐应用(LiveSino和微软信仰中心联合评选)
微软信仰中心于2016年12月9日联合了 LiveSino 进行了最佳 Windows Store 应用特辑的投票评选,通过为期20天的海量用户投票,Win10版<芒果TV>荣获最佳官方应 ...
- java模拟post请求发送json数据
import com.alibaba.fastjson.JSONObject; import org.apache.http.client.methods.CloseableHttpResponse; ...
- MongoDB数据查询
启动MongoDB:sudo service mongodb start,mongo 经测试,键可加引号也可不加,但是值一般要加引号,数值类型除外 MongoDB区分大小写,命名通常采用驼峰式命名法 ...
- Impala概念与架构
Impala概念与架构 下面的内容介绍Cloudera Impala的背景资料及特性,以便你更高效的使用它.Where appropriate, the explanations include co ...
- Kafka笔记7
Kafka提供了一些命令行工具,用于管理集群变更.这些工具使用Java实现,Kafka提供了一些脚本调用这些Java类. 9.1主题操作 使用Kafka-topics.sh工具可以执行主题大部分工作, ...
- shell日期整理
date 当前日期+时间 # 日期格式化:date+"" - date +"%Y%m%d" 不带横杠分隔符的日期20160107 date +"%Y% ...
- java web 开发教程(1) - 开发环境搭建
勤拂拭软件系列教程 之 Java Web开发之旅(1) Java Web开发环境搭建 1 前言 工作过程中,遇到不少朋友想要学习jsp开发,然而第一步都迈不出,连一个基本的环境都没有,试问,如何能够继 ...
- 关于学习js的Promise的心得体会
最近一直在研究js的Promise对象,其中有一篇blog写得比较通俗易懂,转发如下: http://www.cnblogs.com/lvdabao/p/es6-promise-1.html 参照上面 ...
- bean 解析、注册、实例化流程源码剖析
本spring源码的版本:4.3.7 Spring bean的加载主要分为以下6步: (1)读取XML配置文件 (2)XML文件解析为document文档 (3)解析bean (4)注册bean (5 ...
- python trojan development 3rd —— use python to creative a simple shell
前两篇文章的木马太被动,今天是通过socket和os来进行主动木马编写 有些s13,我真的搞不懂拿一些没过脑子的代码就放到网上去害人,骗流量,还某知名安全企业学院写的,真的服.我的代码自己运行过,很稳 ...