Zeppelin为0.5.6

Zeppelin默认自带本地spark,可以不依赖任何集群,下载bin包,解压安装就可以使用。

使用其他的spark集群在yarn模式下。

配置:

vi zeppelin-env.sh

添加:

export SPARK_HOME=/usr/crh/current/spark-client
export SPARK_SUBMIT_OPTIONS="--driver-memory 512M --executor-memory 1G"
export HADOOP_CONF_DIR=/etc/hadoop/conf

Zeppelin Interpreter配置

注意:设置完重启解释器。

Properties的master属性如下:

新建Notebook

Tips:几个月前zeppelin还是0.5.6,现在最新0.6.2,zeppelin 0.5.6写notebook时前面必须加%spark,而0.6.2若什么也不加就默认是scala语言。

zeppelin 0.5.6不加就报如下错:

Connect to 'databank:4300' failed
%spark.sql
select count(*) from tc.gjl_test0

报错:

com.fasterxml.jackson.databind.JsonMappingException: Could not find creator property with name 'id' (in class org.apache.spark.rdd.RDDOperationScope)
at [Source: {"id":"2","name":"ConvertToSafe"}; line: 1, column: 1]
at com.fasterxml.jackson.databind.JsonMappingException.from(JsonMappingException.java:148)
at com.fasterxml.jackson.databind.DeserializationContext.mappingException(DeserializationContext.java:843)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.addBeanProps(BeanDeserializerFactory.java:533)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.buildBeanDeserializer(BeanDeserializerFactory.java:220)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.createBeanDeserializer(BeanDeserializerFactory.java:143)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer2(DeserializerCache.java:409)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer(DeserializerCache.java:358)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCache2(DeserializerCache.java:265)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCacheValueDeserializer(DeserializerCache.java:245)
at com.fasterxml.jackson.databind.deser.DeserializerCache.findValueDeserializer(DeserializerCache.java:143)
at com.fasterxml.jackson.databind.DeserializationContext.findRootValueDeserializer(DeserializationContext.java:439)
at com.fasterxml.jackson.databind.ObjectMapper._findRootDeserializer(ObjectMapper.java:3666)
at com.fasterxml.jackson.databind.ObjectMapper._readMapAndClose(ObjectMapper.java:3558)
at com.fasterxml.jackson.databind.ObjectMapper.readValue(ObjectMapper.java:2578)
at org.apache.spark.rdd.RDDOperationScope$.fromJson(RDDOperationScope.scala:85)
at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:136)
at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:136)
at scala.Option.map(Option.scala:145)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:136)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:56)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:187)
at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374)
at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099)
at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374)
at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.zeppelin.spark.ZeppelinContext.showDF(ZeppelinContext.java:297)
at org.apache.zeppelin.spark.SparkSqlInterpreter.interpret(SparkSqlInterpreter.java:144)
at org.apache.zeppelin.interpreter.ClassloaderInterpreter.interpret(ClassloaderInterpreter.java:57)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:93)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:300)
at org.apache.zeppelin.scheduler.Job.run(Job.java:169)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:134)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)

原因:

进入/opt/zeppelin-0.5.6-incubating-bin-all目录下:

# ls lib |grep jackson
jackson-annotations-2.5.0.jar
jackson-core-2.5.3.jar
jackson-databind-2.5.3.jar

将里面的版本换成如下版本:

# ls lib |grep jackson
jackson-annotations-2.4.4.jar
jackson-core-2.4.4.jar
jackson-databind-2.4.4.jar

测试成功!

参考网站

Sparksql也可直接通过hive jdbc连接,只需换端口,如下图:

Zeppelin0.5.6使用spark解释器的更多相关文章

  1. Zeppelin使用spark解释器

    Zeppelin为0.5.6 Zeppelin默认自带本地spark,可以不依赖任何集群,下载bin包,解压安装就可以使用. 使用其他的spark集群在yarn模式下. 配置: vi zeppelin ...

  2. Zeppelin0.6.2使用hive解释器

    Zeppelin0.6.2的jdbc Interpreter 配置 1.拷贝hive的配置文件hive-site.xml到zeppelin-0.6.2-bin-all/conf下. 2.进入conf下 ...

  3. Zeppelin0.5.6使用hive解释器

    此zeppelin为官方0.5.6版,可能还在孵化阶段,可能出现一些bug吧. 配置 cp zeppelin-env.sh.template zeppelin-env.sh vi zeppelin-e ...

  4. Zeppelin0.7.2结合hive解释器进行报表展示

    前提:服务器已经安装好了hadoop_client端即hadoop的环境hbase,hive等相关组件 1.环境和变量配置①拷贝hive的配置文件hive-site.xml到zeppelin-0.7. ...

  5. Zeppelin使用Spark的yarn-client模式

    Zeppelin版本0.6.2 1. Export SPARK_HOME In conf/zeppelin-env.sh, export SPARK_HOME environment variable ...

  6. Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)论文 | ApacheCN

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  7. Apache Spark RDD(Resilient Distributed Datasets)论文

    Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD ...

  8. hadoop-2.7.3.tar.gz + spark-2.0.2-bin-hadoop2.7.tgz + zeppelin-0.6.2-incubating-bin-all.tgz(master、slave1和slave2)(博主推荐)(图文详解)

    不多说,直接上干货! 我这里,采取的是ubuntu 16.04系统,当然大家也可以在CentOS6.5里,这些都是小事 CentOS 6.5的安装详解 hadoop-2.6.0.tar.gz + sp ...

  9. Zeppelin 0.6.2使用Spark的yarn-client模式

    Zeppelin版本0.6.2 1. Export SPARK_HOME In conf/zeppelin-env.sh, export SPARK_HOME environment variable ...

随机推荐

  1. MySQL 常用数据存储引擎区别

    mysql有多种存储引擎,目前常用的是 MyISAM 和 InnoDB 这两个引擎,除了这两个引擎以为还有许多其他引擎,有官方的,也有一些公司自己研发的.这篇文章主要简单概述一下常用常见的 MySQL ...

  2. mysql练习(一)

    练习一 创建表,并插入相关数据 CREATE TABLE email ( ID INT NOT NULL PRIMARY KEY, Email VARCHAR() ) INSERT INTO emai ...

  3. GitLab一键式安装bitnami 专题

    git lab developer角色不能提交到master分支的问题 错误提示: git -c diff.mnemonicprefix=false -c core.quotepath=false p ...

  4. 邮件带附件和html格式

    1. 发送有附件的邮件需要添加一个附件类Attachment,这个附件可以为文件和图片: Attachment attach = new Attachment(“文件路径”");//文件 A ...

  5. Window Features(包括Z-Order,Layered Windows, Message-Only Windows, Owned Windows, Window的状态等)

    https://msdn.microsoft.com/en-us/library/windows/desktop/ms632599(v=vs.85).aspx#owned_windows https: ...

  6. delphi dispose释放内存的方法

    delphi dispose释放内存的方法 2010-06-08 19:39:59|  分类: DELPHI |  标签: |举报 |字号大中小 订阅     dispose使用方法的简单介绍在本文末 ...

  7. maven项目或者SpringBoot项目启动时报错在本地仓库中找不到jar包的解决办法

    经常遇到项目检出来后是导入开发工具eclipse中pom文件出错问题,项目启动时遇到了一些列的jar包找不到的问题,所以换个开发平台到IDEA以为会好些,结果同样的问题还是会出现的,为了找到具体的解决 ...

  8. C语言实现常用排序算法——基数排序

    #include<stdio.h> #include<math.h> #define SIZE 10 #define C_SIZE 20 /*行数稳定=10,切记!列数务必搞的 ...

  9. PHP实现图片(文件)上传

    这几天整理做过的php项目,感觉这个经常会用到,传上来共享一下咯 首先,前端界面 1.表单的首行需要加上enctype="multipart/form-data",需要上传的图片必 ...

  10. 一道经典的js面试题

    # 声明:学习编程语言最好的方式就是通过实例学习 ## 下面是我在博客上看到的一道js面试题,可以说非常经典,下面会以最简单的方式让你理解题目:```bashfunction Foo() { getN ...