题目链接:https://vjudge.net/problem/POJ-2253

思路:

从一号到二号石头的所有路线中,每条路线中都个子选出该路线中两点通路的最长距离,并在这些选出的最长距离选出最短路的那个距离X,

就是青蛙距离,即青蛙至少能跳X米,才能安全的到达二号,因为什么,再看看第一句话。

再想,我们知道,djikstra中的价值数组存的是从u点到其他所有点的最短距离,way[ 1 ] 是u到1的最短距离, way[ x ] 是u到x的最短距离,

我们知道djikstra的时间复杂度是O(n^2),这个时间复杂是是因为我们访问了所有的从一个城市出发到其他城市所有情况(除去已经最优的城市),

有n个城市,去其他(除去最优)的个城市,所有比较次数可以用接近(n^2)表示。

我为什么要说这个呢,我只想表达。。。我只是想强调dijstra保存了最优路线和不确定路线的价值,访问了其他不确定的路线去更新不确定价值的路线,

慢慢得到所有最优路线。

那么,我们可不可以把这个价值数组利用在这个题目上,改变维护方式呢?

我们可以这么想题目意思,价值数组只存一条路线,那么它一定存的是到该城市的最长距离,然后,我们需要把这个最长距离尽可能变小,即最小化最大距离。

那么我们就可以用dijkstra算法来求这个问题,那我们需要怎么维护。

(1):首先,价值数组初始化一样。

(2):我们需要找出最小的价值数组,为什么?(里面存的是起始点到该点的所有路线中最小化的最大距离)

(3):我们找出了最小的价值数组,即得到了城市编号,那么,我们用该点去访问其他不确定的城市。

(4): 维护方法 :way[ k ] > max( dis[ x ][ k ], way[ x ] ),  max( dis[ x ][ k ], way[ x ] )表示,从起始点到x点所有路线的的最小化的最大距离和x到k的距离选出最大的和

从起始点到k点部分路线的的最小化的最大距离比较,如果k点的从起始点到k点部分路线的的最小化的最大距离比从起始点到x点所有路线的的最小化的最大距离和x到k的距离选出最大的

的大,说明k可以被优化,那么  :way[ k ] =max( dis[ x ][ k ], way[ x ] ),  max( dis[ x ][ k ], way[ x ] )。

(5):直到最后得到从起始点到其他所有点的最小化最大距离。

( 代码就不加上注释了,只要上面的理解了,代码很容易理解 )

这个题目在思维上还是有点难的,可以慢慢理解。


 #include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <string>
#include <cmath>
#include <iomanip>
using namespace std; typedef long long LL;
#define inf (1LL << 30) - 1
#define rep(i,j,k) for(int i = (j); i <= (k); i++)
#define rep__(i,j,k) for(int i = (j); i < (k); i++)
#define per(i,j,k) for(int i = (j); i >= (k); i--)
#define per__(i,j,k) for(int i = (j); i > (k); i--) const int N = ;
double p_x[N];
double p_y[N];
double dis[N][N];
bool vis[N];
double way[N];
int n,x,y; void init(){
rep(i,,n) rep(j,,n){
if(i == j) dis[i][j] = ;
else dis[i][j] = inf;
}
rep(i,,n) vis[i] = false;
} void input(){ rep(i,,n){
cin >> p_x[i] >> p_y[i];
}
} inline double fun_dis(double x1, double y1, double x2, double y2){
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
} void calculate_dis(){ rep(i,,n){
rep(j,,n){
double tmp_dis = fun_dis(p_x[i],p_y[i],p_x[j],p_y[j]);
if( tmp_dis < dis[i][j] )
dis[i][j] = dis[j][i] = tmp_dis;
}
}
} void dijkstra(){ rep(i,,n) way[i] = dis[][i];
vis[] = true; rep(i,,n){ int x = -;
double v = inf; rep(j,,n){
if(!vis[j] && v > way[j]) v = way[x = j];
} if(x == -) continue;
vis[x] = true; rep(k,,n){
if(!vis[k] && way[k] > max(way[x], dis[x][k])){
way[k] = max(way[x], dis[x][k]);
}
}
}
} int main(){ ios::sync_with_stdio(false);
cin.tie(); int cnt = ;
while(cin >> n){
if(n == ) break; init();
input();
calculate_dis();
dijkstra(); cout << "Scenario #" << ++cnt << endl;
cout << "Frog Distance = " << fixed << setprecision() << way[] << endl;
cout << endl;
} getchar();getchar(); return ;
}

kuangbin专题专题四 Frogger POJ - 2253的更多相关文章

  1. floyd类型题UVa-10099-The Tourist Guide +Frogger POJ - 2253

    The Tourist Guide Mr. G. works as a tourist guide. His current assignment is to take some tourists f ...

  2. Frogger POJ - 2253(求两个石头之间”所有通路中最长边中“的最小边)

    题意 ​ 题目主要说的是,有两只青蛙,在两个石头上,他们之间也有一些石头,一只青蛙要想到达另一只青蛙所在地方,必须跳在石头上.题目中给出了两只青蛙的初始位置,以及剩余石头的位置,问一只青蛙到达另一只青 ...

  3. Frogger POJ - 2253

    题意 给你n个点,1为起点,2为终点,要求所有1到2所有路径中每条路径上最大值的最小值. 思路 不想打最短路 跑一边最小生成树,再扫一遍1到2的路径,取最大值即可 注意g++要用%f输出!!! 常数巨 ...

  4. Frogger - poj 2253 (Dijkstra)

      Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 28802   Accepted: 9353 Description Fr ...

  5. 「kuangbin带你飞」专题十四 数论基础

    layout: post title: 「kuangbin带你飞」专题十四 数论基础 author: "luowentaoaa" catalog: true tags: mathj ...

  6. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

  7. 开发指南专题十四:JEECG微云高速开发平台MiniDao 介绍

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/zhangdaiscott/article/details/27068645   开发指南专题十四:J ...

  8. POJ 2253 Frogger ,poj3660Cow Contest(判断绝对顺序)(最短路,floyed)

    POJ 2253 Frogger题目意思就是求所有路径中最大路径中的最小值. #include<iostream> #include<cstdio> #include<s ...

  9. POJ. 2253 Frogger (Dijkstra )

    POJ. 2253 Frogger (Dijkstra ) 题意分析 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标.给出的n个点,两两双向互通,求出由1到2可行 ...

随机推荐

  1. Python在windows下的服务程序

    Python程序作为Windows服务启动,需要安装pywin32包.下载路径: 我是下载路径 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 ...

  2. 领域驱动设计(DDD)的实践经验分享之持久化透明

    原文:领域驱动设计(DDD)的实践经验分享之持久化透明 前一篇文章中,我谈到了领域驱动设计中,关于ORM工具该如何使用的问题.谈了很多我心里的想法,大家也对我的观点做了一些回复,或多或少让我深深感觉到 ...

  3. PHP网站开发方案

    一. 开发成员 a)项目主管 b)页面美工c)页面开发 d)服务端程序开发e)系统与数据管理f)测试与版本控制 二. 网站组开发简明流程 三. 开发工具与环境 a) 服务器配置i. WEB服务器: F ...

  4. Netty源码分析--Channel注册(上)(五)

    其实在将这一节之前,我们来分析一个东西,方便下面的工作好开展. 打开启动类,最开始的时候创建了一个NioEventLoopGroup 事件循环组,我们来跟一下这个. 这里bossGroup, 我传入了 ...

  5. webapi使用autofac

    注意:您的项目中如果使用的是webapi2,此处必须为webapi2而不是webapi,否则在运行时将出现“重写成员“Autofac.Integration.WebApi.AutofacWebApiD ...

  6. spring cloud 系列第4篇 —— feign 声明式服务调用 (F版本)

    源码Gitub地址:https://github.com/heibaiying/spring-samples-for-all 一.feign 简介 在上一个用例中,我们使用ribbon+restTem ...

  7. 老雷socket编程之websocket实现

    老雷socket编程之websocket实现 我们主要实现私聊和群聊两个功能,要在web端实现想微信QQ那样的即时通讯的功能,我们需要了解一下websocket.websocket是一种可以双向通讯的 ...

  8. Docker 安装mysql容器数据卷挂载到宿主机

    环境 Centos:7 Docker: 17.05-ce Mysql: 5.7 1. Mysql外部数据和配置文件路径 msyql配置文件路径:/etc/mysql mysql数据卷路径:/var/l ...

  9. javascript函数详解

    //函数的两种声明方式 //在同一个<script>标签中,函数的调用和声明位置可以没有先后的顺序,因为在同一个标签中,都是等加载到内存中,然后在运行 //但是如果是在两个script标枪 ...

  10. chromedriver配置

    需要先安装chrome浏览器,添加chrome源 sudo vim /etc/yum.repos.d/google-chrome.repo 添加以下内容 [google-chrome] name=go ...