tijie

时间限制: 2 Sec  内存限制: 256 MB

题目描述

有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数。得到的新字
符和分数由这 k 个字符确定。你需要求出你能获得的最大分数。

输入

第一行两个整数n,k。接下来一行长度为n的01串,表示初始串。接下来2k行,每行一个字符ci和一个整数wi,ci
表示长度为k的01串连成二进制后按从小到大顺序得到的第i种合并方案得到的新字符,wi表示对应的第i种方案对应
获得的分数。1<=n<=300,0<=ci<=1,wi>=1,k<=8

输出

输出一个整数表示答案

样例输入

3 2
101
1 10
1 10
0 20
1 30

样例输出

40
//第3行到第6行表示长度为2的4种01串合并方案。00->1,得10分,01->1得10分,10->0得20分,11->1得30分。
  这道题当时是按照搜索或动归去做的,然而,想不出动归状态咋搞啊,于是乎,花了不到半个小时打了一个MLE的爆搜果断挂了,爆零。
  其实正解真的是DP,只是状态蛮有意思的,这是一种区间动归的思想,因为他合并只是一段串合并,对左右两端的串无直接影响而n,k也不大,因此我们考虑一下状压,当时不是没想过这点,只是压什么,怎么压是个问题,我们自然是不可能去压全串的状态,但我们可以稍微算一下,区间动归所需的状态数组加上状压应是3维,300*300=90000,如果以一般数组大小(个人理解是1000000~20000000)的话大约还能压100~200左右,那么就是256——2^8了,2^8有什么实际意义呢8就是k的最小值,我们就可以根据这个信息猜到可能是要去压8位。
  那么压8位的化状态数组就是f[301][301][1<<8]了,f[i][j][s]就表示从i到j之间进行字符串替换后成为s的状态所能得到的最大值,转移也就成为了区间动归套路,首先第一层循环一定是枚举区间长度,用小区间去维护大区间,第二层就是枚举左端点了,第三层也就是枚举中间值,由于还有状压,第四层就是枚举状态了,由于我们每次合并都是以k为长度,所以右端点不必挨个枚举,每次减去k-1即可。
  然后如果len=k-1,说明该串可以被合并,我们就去找每个合法状态中转化为0或1中最大的两个,由于最终只能变化为0或1,这样无疑是正确的,然后,统计一下最优答案就好了。
  
 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<string>
#include<cmath>
using namespace std;
int n,k;
long long b[<<],c[<<];
long long f[][][<<];
char a[];
int main(){
// freopen("merge.in","r",stdin);
// freopen("merge.out","w",stdout);
memset(f,-0x7f,sizeof(f));
scanf("%d%d",&n,&k);
scanf("%s",a);
for(int i=;i<=n;i++)
{
f[i][i][a[i-]-'']=;
}
for(int i=;i<(<<k);i++)
{
scanf("%lld%lld",&b[i],&c[i]);
}
for(int l=;l<=n;l++)
{
for(int i=;i<=n-l+;i++)
{
int j=i+l-;
int len=j-i;
while(len>=k){
len-=k-;
}
for(int t=j;t>i;t-=k-)
{
for(int s=;s<(<<(len));s++)
{
if(f[i][t-][s]!=f[][][]&&f[t][j][]!=f[][][])
{
f[i][j][s<<]=max(f[i][j][s<<],f[i][t-][s]+f[t][j][]);
}
if(f[i][t-][s]!=f[][][]&&f[t][j][]!=f[][][])
{
f[i][j][s<<|]=max(f[i][j][s<<|],f[i][t-][s]+f[t][j][]);
}
}
}
if(len==k-)
{
long long g[];
g[]=g[]=f[][][];
for(int s=;s<(<<k);s++)
{
if(f[i][j][s]!=f[][][])
{
g[b[s]]=max(g[b[s]],f[i][j][s]+c[s]);
}
}
f[i][j][]=g[];
f[i][j][]=g[];
}
}
}
long long ans=f[][][];
for(int i=;i<(<<k);i++)
{
ans=max(ans,f[][n][i]);
}
printf("%lld\n",ans);
//while(1);
return ;
}

 

[Haoi2016]字符合并 题解的更多相关文章

  1. 【BZOJ】4565: [Haoi2016]字符合并

    4565: [Haoi2016]字符合并 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 690  Solved: 316[Submit][Status ...

  2. 题解 [HAOI2016]字符合并

    题目传送门 Description 有一个长度为 \(n\) 的 \(01\) 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数. 得到的新字符和分数由这 k 个字符确定.你需要 ...

  3. BZOJ4565 [Haoi2016]字符合并

    题意 有一个长度为\(n\)的\(01\)串,你可以每次将相邻的\(k\)个字符合并,得到一个新的字符并获得一定分数.得到的新字符和分数由这\(k\)个字符确定.你需要求出你能获得的最大分数. \(n ...

  4. 【BZOJ4565】 [Haoi2016]字符合并

    Description 有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数.得到的新字 符和分数由这 k 个字符确定.你需要求出你能获得的最大分数. I ...

  5. BZOJ4565 HAOI2016字符合并(区间dp+状压dp)

    设f[i][j][k]为将i~j的字符最终合并成k的答案.转移时只考虑最后一个字符是由哪段后缀合成的.如果最后合成为一个字符特殊转移一下. 复杂度看起来是O(n32k),实际常数极小达到O(玄学). ...

  6. 2018.10.25 bzoj4565: [Haoi2016]字符合并(区间dp+状压)

    传送门 当看到那个k≤8k\le 8k≤8的时候就知道需要状压了. 状态定义:f[i][j][k]f[i][j][k]f[i][j][k]表示区间[i,j][i,j][i,j]处理完之后的状态为kkk ...

  7. [BZOJ4565][HAOI2016]字符合并(区间状压DP)

    https://blog.csdn.net/xyz32768/article/details/81591955 首先区间DP和状压DP是比较明显的,设f[L][R][S]为将[L,R]这一段独立操作最 ...

  8. 【BZOJ 4565】 [Haoi2016]字符合并 区间dp+状压

    考试的时候由于总是搞这道题导致爆零~~~~~(神™倒序难度.....) 考试的时候想着想着想用状压,但是觉得不行又想用区间dp,然而正解是状压着搞区间,这充分说明了一件事,状压不是只是一种dp而是一种 ...

  9. [HAOI2016]字符合并

    Luogu3736 很容易想到直接DP,关键是枚举顺序. \(1.\)设后一段构成最后一个点,前一段构成前面的点,那么能得到\(1\)个点的数量要求 : \(1,k,2k-1...\)相差\(k-1\ ...

随机推荐

  1. Microsoft Enterprise Library 5.0 系列(三)

    一.简介及用途 在实际的项目开发中,我们总会需要对数据进行验证,以保证数据的可靠性,而为了使这些验证可以在不同的地方进行复用(如winform.web.WPF等),就需要将验证进行封装,EntLib的 ...

  2. SQL Server 2016新特性:DROP IF EXISTS

    原文:SQL Server 2016新特性:DROP IF EXISTS  在我们写T-SQL要删除某个对象(表.存储过程等)时,一般会习惯先用IF语句判断该对象是否存在,然后DROP,比如: 旧 ...

  3. Win10《芒果TV》跨年邀你嗨唱,同步直播《湖南卫视2017-2018跨年演唱会》

    由天天兄弟.快本家族联袂主持,不容错过的年度盛典<湖南卫视2017-2018跨年演唱会>将于2017年12月31日19:30起由芒果TV同步直播,果妈备上礼物邀您一起跨年嗨唱. 跨年邀你嗨 ...

  4. LINQ查询表达式---------let子句

    LINQ查询表达式---------let子句 let子句创建一个范围变量来存储结果,变量被创建后,不能修改或把其他表达式的结果重新赋值给它.此范围变量可以再后续的LINQ子句中使用. class P ...

  5. C#管理服务停止启动

    由于机器性能问题,把许多服务关闭了,需要用的时候再开启,这样每次都打开服务管理或cmd命令比较麻烦.就自己写了工具显示在桌面上; 声明:ServiceController myController = ...

  6. java模拟post请求发送json数据

    import com.alibaba.fastjson.JSONObject; import org.apache.http.client.methods.CloseableHttpResponse; ...

  7. C# 利用 OpenCV 进行视频捕获 (笔记)

    原文:C# 利用 OpenCV 进行视频捕获 (笔记) 简介 这个项目是关于如何从网络摄像头或者视频文件(*.AVI)中捕获视频的,这个项目是用C#和OPENCV编写的. 这将有助于那些喜欢C#和Op ...

  8. Qt在Windows下如何创建无CMD窗口控制台程序

    默认情况下,用Qt新建一个控制台程序,运行时会弹出CMD窗口.如何把窗口去掉呢? *.pro文件默认是这样的: TEMPLATE = app CONFIG += console CONFIG -= a ...

  9. RocketMQ(1)-架构原理

    RocketMQ(1)-架构原理 RocketMQ是阿里开源的分布式消息中间件,跟其它中间件相比,RocketMQ的特点是纯JAVA实现:集群和HA实现相对简单:在发生宕机和其它故障时消息丢失率更低. ...

  10. Kong:Nginx支持的API Gateway管理解决方案

    Kong的主要功能 Kong可灵活扩展:只要增添更多的服务器实例,它就能横向扩展,毫无问题,那样你可以支持更多流量,同时确保网络延迟很短. Kong可在任何地方运行:它可以部署在单个或多个数据中心环境 ...