tijie

时间限制: 2 Sec  内存限制: 256 MB

题目描述

有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数。得到的新字
符和分数由这 k 个字符确定。你需要求出你能获得的最大分数。

输入

第一行两个整数n,k。接下来一行长度为n的01串,表示初始串。接下来2k行,每行一个字符ci和一个整数wi,ci
表示长度为k的01串连成二进制后按从小到大顺序得到的第i种合并方案得到的新字符,wi表示对应的第i种方案对应
获得的分数。1<=n<=300,0<=ci<=1,wi>=1,k<=8

输出

输出一个整数表示答案

样例输入

3 2
101
1 10
1 10
0 20
1 30

样例输出

40
//第3行到第6行表示长度为2的4种01串合并方案。00->1,得10分,01->1得10分,10->0得20分,11->1得30分。
  这道题当时是按照搜索或动归去做的,然而,想不出动归状态咋搞啊,于是乎,花了不到半个小时打了一个MLE的爆搜果断挂了,爆零。
  其实正解真的是DP,只是状态蛮有意思的,这是一种区间动归的思想,因为他合并只是一段串合并,对左右两端的串无直接影响而n,k也不大,因此我们考虑一下状压,当时不是没想过这点,只是压什么,怎么压是个问题,我们自然是不可能去压全串的状态,但我们可以稍微算一下,区间动归所需的状态数组加上状压应是3维,300*300=90000,如果以一般数组大小(个人理解是1000000~20000000)的话大约还能压100~200左右,那么就是256——2^8了,2^8有什么实际意义呢8就是k的最小值,我们就可以根据这个信息猜到可能是要去压8位。
  那么压8位的化状态数组就是f[301][301][1<<8]了,f[i][j][s]就表示从i到j之间进行字符串替换后成为s的状态所能得到的最大值,转移也就成为了区间动归套路,首先第一层循环一定是枚举区间长度,用小区间去维护大区间,第二层就是枚举左端点了,第三层也就是枚举中间值,由于还有状压,第四层就是枚举状态了,由于我们每次合并都是以k为长度,所以右端点不必挨个枚举,每次减去k-1即可。
  然后如果len=k-1,说明该串可以被合并,我们就去找每个合法状态中转化为0或1中最大的两个,由于最终只能变化为0或1,这样无疑是正确的,然后,统计一下最优答案就好了。
  
 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<string>
#include<cmath>
using namespace std;
int n,k;
long long b[<<],c[<<];
long long f[][][<<];
char a[];
int main(){
// freopen("merge.in","r",stdin);
// freopen("merge.out","w",stdout);
memset(f,-0x7f,sizeof(f));
scanf("%d%d",&n,&k);
scanf("%s",a);
for(int i=;i<=n;i++)
{
f[i][i][a[i-]-'']=;
}
for(int i=;i<(<<k);i++)
{
scanf("%lld%lld",&b[i],&c[i]);
}
for(int l=;l<=n;l++)
{
for(int i=;i<=n-l+;i++)
{
int j=i+l-;
int len=j-i;
while(len>=k){
len-=k-;
}
for(int t=j;t>i;t-=k-)
{
for(int s=;s<(<<(len));s++)
{
if(f[i][t-][s]!=f[][][]&&f[t][j][]!=f[][][])
{
f[i][j][s<<]=max(f[i][j][s<<],f[i][t-][s]+f[t][j][]);
}
if(f[i][t-][s]!=f[][][]&&f[t][j][]!=f[][][])
{
f[i][j][s<<|]=max(f[i][j][s<<|],f[i][t-][s]+f[t][j][]);
}
}
}
if(len==k-)
{
long long g[];
g[]=g[]=f[][][];
for(int s=;s<(<<k);s++)
{
if(f[i][j][s]!=f[][][])
{
g[b[s]]=max(g[b[s]],f[i][j][s]+c[s]);
}
}
f[i][j][]=g[];
f[i][j][]=g[];
}
}
}
long long ans=f[][][];
for(int i=;i<(<<k);i++)
{
ans=max(ans,f[][n][i]);
}
printf("%lld\n",ans);
//while(1);
return ;
}

 

[Haoi2016]字符合并 题解的更多相关文章

  1. 【BZOJ】4565: [Haoi2016]字符合并

    4565: [Haoi2016]字符合并 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 690  Solved: 316[Submit][Status ...

  2. 题解 [HAOI2016]字符合并

    题目传送门 Description 有一个长度为 \(n\) 的 \(01\) 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数. 得到的新字符和分数由这 k 个字符确定.你需要 ...

  3. BZOJ4565 [Haoi2016]字符合并

    题意 有一个长度为\(n\)的\(01\)串,你可以每次将相邻的\(k\)个字符合并,得到一个新的字符并获得一定分数.得到的新字符和分数由这\(k\)个字符确定.你需要求出你能获得的最大分数. \(n ...

  4. 【BZOJ4565】 [Haoi2016]字符合并

    Description 有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数.得到的新字 符和分数由这 k 个字符确定.你需要求出你能获得的最大分数. I ...

  5. BZOJ4565 HAOI2016字符合并(区间dp+状压dp)

    设f[i][j][k]为将i~j的字符最终合并成k的答案.转移时只考虑最后一个字符是由哪段后缀合成的.如果最后合成为一个字符特殊转移一下. 复杂度看起来是O(n32k),实际常数极小达到O(玄学). ...

  6. 2018.10.25 bzoj4565: [Haoi2016]字符合并(区间dp+状压)

    传送门 当看到那个k≤8k\le 8k≤8的时候就知道需要状压了. 状态定义:f[i][j][k]f[i][j][k]f[i][j][k]表示区间[i,j][i,j][i,j]处理完之后的状态为kkk ...

  7. [BZOJ4565][HAOI2016]字符合并(区间状压DP)

    https://blog.csdn.net/xyz32768/article/details/81591955 首先区间DP和状压DP是比较明显的,设f[L][R][S]为将[L,R]这一段独立操作最 ...

  8. 【BZOJ 4565】 [Haoi2016]字符合并 区间dp+状压

    考试的时候由于总是搞这道题导致爆零~~~~~(神™倒序难度.....) 考试的时候想着想着想用状压,但是觉得不行又想用区间dp,然而正解是状压着搞区间,这充分说明了一件事,状压不是只是一种dp而是一种 ...

  9. [HAOI2016]字符合并

    Luogu3736 很容易想到直接DP,关键是枚举顺序. \(1.\)设后一段构成最后一个点,前一段构成前面的点,那么能得到\(1\)个点的数量要求 : \(1,k,2k-1...\)相差\(k-1\ ...

随机推荐

  1. MySQL 常用数据存储引擎区别

    mysql有多种存储引擎,目前常用的是 MyISAM 和 InnoDB 这两个引擎,除了这两个引擎以为还有许多其他引擎,有官方的,也有一些公司自己研发的.这篇文章主要简单概述一下常用常见的 MySQL ...

  2. ASP.NET MVC5快速入门--MyFirstWeb并发布到Windows Azure上

    博主刚刚学习ASP.NET MVC5,看着微软的文档一点点学,就把FirstWeb的建立展示一下下啦,本次建立一个带个人身份验证的例子(即有注册登录机制的动态网页),开始,啦啦啦~~ 新建一个项目,选 ...

  3. Delphi移动开发笔记(一)

    Delphi从XE4版本就开始支持移动开发了,但是笔者最近才开始学习这块内容.因为笔者原来一直使用的是Delphi7,对于很多新语法没有了解过,所以把其中一些东西记录下来.        程序开发,调 ...

  4. MiTeC System Information Component Suite 10.9.2 D5-XE3 Full Source

    The most complex system information probe in Delphi world, it consists of many standalone components ...

  5. LockWindowUpdate

     //锁住listview防止反复刷新              LockWindowUpdate(Self.lvsearch.Handle);    貌似不太行,多用几下就卡住了  那个函数几乎不用 ...

  6. qobject_cast<QPushButton*>(sender()) 简化信号与槽的编写(sender()取得发信号的对象后,就取得了它的全部信息,为所欲为)

    当你觉得写代码是一件重复性极高的工作时,这时你就应该考虑换个方式来实现了. 提高代码效率,减少代码量. 代码片: void Widget::onClicked() { QPushButton* but ...

  7. 八大排序算法 JAVA实现 亲自测试 可用!

    今天很高兴 终于系统的实现了八大排序算法!不说了 直接上代码 !代码都是自己敲的, 亲测可用没有问题! 另:说一下什么是八大排序算法: 插入排序 希尔排序 选择排序 堆排序 冒泡排序 快速排序 归并排 ...

  8. fullpage.js使用方法

    了解: [1]之所以叫做fullpage,是因为它可以全屏滚动,拥有强大的功能. [2]它依赖于jQuery库,所以在使用fullpage之前先引入jQuery库. 使用: [1]<link r ...

  9. SYN5605型 多通道时间间隔测量仪

      SYN5605型 多通道时间间隔测量仪 时间间隔测量设备多通道时间间隔测量32路时间间隔测量仪使用说明视频链接; http://www.syn029.com/h-pd-80-0_310_6_-1. ...

  10. C语言实现常用数据结构——堆

    #include<stdio.h> #include<stdlib.h> #define CAPACITY 20 /*堆有两个性质: * 1.结构性:堆必须是一颗完全二叉树 * ...