相关性算分
  指文档与查询语句间的相关度,通过倒排索引可以获取与查询语句相匹配的文档列表
 
如何将最符合用户查询需求的文档放到前列呢?
  本质问题是一个排序的问题,排序的依据是相关性算分,确定倒排索引哪个文档排在前面
 
影响相关度算分的参数:
  A. TF(Term Frequency):词频,即单词在文档中出现的次数,词频越高,相关度越高,计算公式: tf(t in d) = √frequency
  B. Document Frequency(DF):文档词频, 该词出现在多少篇文档中
  C. IDF(Inverse Document Frequency):倒排文档频度,与文档词频相反,即 1/DF。即单词出现的文档数越少,相关度越高(如果一个单词在文档集出现越少,算为越重要单词),计算公式:idf(t) = 1 + log ( numDocs / (docFreq + 1))
  D. Field-length Norm:字段长度归约, 字段有多长?字段越短,那么其权重就越高。如果一个词条出现在较短的字段,如 title 字段中,那么该字段的内容相比更长的body 字段而言,更有可能是关于该词条的,计算公式: norm(d) = 1 / √numTerms
 
• TF/IDE 模型
                   
  a) score(q, d),文档 d 与查询 q 的相关度分数(relevance score)
  b) queryNorm(q),查询正则因子(query normalization factor)试图将查询正则化,以便可以比较两个不同 query 的结果
  c) coord(q, d),协调因子(coordination factor)
    
  d) tf(t in d),term t 在文档 d 中的词频
  e) idf(t),term t 的逆向文档频率
  f) t.getBoost(),查询中使用的自定义 boost,竞价排名用
  g) norm(t, d),文档 d 的文本长度正则值
 
• BM25 模型(5.X 之后的默认模型)
                  
  a) |D|:文档长度
  b) avgdl:所有文档的平均文档长度
  c) k1,b 是自由参数,lucene 默认 k1=1.2,b=0.75
  d) IDF = log((#Docs - #DocsHit + 0.5)/(#DocsHit + 0.5))
  e) TF = query count in one doc
 
 
 
BM25 相比 TF/IDF 的一大优化是降低了 tf 在过大时的权重,避免词频对查询影响过大

影响ES相关度算分的因素的更多相关文章

  1. ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分

    一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...

  2. Elasticsearch从入门到放弃:浅谈算分

    今天来聊一个 Elasticsearch 的另一个关键概念--相关性算分.在查询 API 的结果中,我们经常会看到 _score 这个字段,它就是用来表示相关性算分的字段,而相关性就是描述一个文档和查 ...

  3. Lucene TF-IDF 相关性算分公式(转)

    Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很 ...

  4. 影响pogo pin连接器使用寿命的因素

    精细化.安装简易化及使用寿命长是现在数码电子产品的趋势发展,pogo pin连接器体积小而且弹簧伸缩式设计,可以更好的缩小数码电子产品的尺寸并且连接安装更加的简单方便,因此pogo pin连接器得到了 ...

  5. Solr相似度算法一:Lucene TF-IDF 相关性算分公式

    Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很 ...

  6. Lucene TF-IDF 相关性算分公式

    转自: http://lutaf.com/210.htm Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF- ...

  7. RTMP服务器的延迟,多级边缘不影响延迟,gop为最大因素

    转自:http://blog.chinaunix.net/uid-26000296-id-4932826.html 编码器用FMLE,用手机秒表作为延迟计算. 结论: 1. 影响延迟的三个重要因素:网 ...

  8. UnixBench算分介绍

    关于如何用UnixBench,介绍文章很多,这里就不展开了.这里重点描述下它是如何算分的. 运行参数 碰到很多客户,装好后,直接./Run,就把结果跑出来了,然后还只取最后一个分值,比谁高谁低.下面列 ...

  9. Elasticsearch BM25相关度算法超详细解释

    Photo by Pixabay from Pexels 前言:日常在使用Elasticsearch的搜索业务中多少会出现几次 "为什么这个Doc分数要比那个要稍微低一点?".&q ...

随机推荐

  1. SpringCloud之链路追踪整合Sleuth(十三)

    前言 SpringCloud 是微服务中的翘楚,最佳的落地方案. 在一个完整的微服务架构项目中,服务之间的调用是很复杂的,当其中某一个服务出现了问题或者访问超时,很 难直接确定是由哪个服务引起的,所以 ...

  2. 详细讲解CSS中相对定位relative和绝对定位absolute

    很多朋友问过我absolute与relative怎么区分,怎么用?我们都知道absolute是绝对 定位,relative是相对定位,但是这个绝对与相对是什么意思呢?绝对是什么地方的绝对,相对又是相对 ...

  3. 面向对象的7个设计原则->开车理解->贴近生活

    设计模式在我们的开发中是不可或缺的一部分,很多人会说,我没用那些设计模式啊,我也开发的挺好的,其实不然,我们在开发中都用到了这些设计模式,只不过我们并没有在意这些,今天我就用开车的方法来解释一下我们的 ...

  4. 使用Typescript重构axios(二十五)——文件上传下载进度监控

    0. 系列文章 1.使用Typescript重构axios(一)--写在最前面 2.使用Typescript重构axios(二)--项目起手,跑通流程 3.使用Typescript重构axios(三) ...

  5. m99 然而并没有想出来标题!

    这是放假回来的第一次考试,如同往常一样,我每逢放假回来第一次考试就会废掉,这次也不例外 这次不想粘成绩,因为实在是rp没了! 之前的几次都是别人在CE等等被lemon砍分,而我被lemon多测分. 但 ...

  6. Linux学习(推荐学习资源)——保持更新

    1. 介绍 Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和Unix的多用户.多任务.支持多线程和多CPU的操作系统.它能运行主要的Unix工具软件.应用程序和网络协议. ...

  7. C++中对C的扩展学习新增内容———面向对象(继承)函数扩展性及虚函数机制

    1.c语言中的多态,动态绑定和静态绑定 void do_speak(void(*speak)()) { speak(); } void pig_speak() { cout << &quo ...

  8. NetCore基于EasyNetQ的高级API使用RabbitMq

    一.消息队列 消息队列作为分布式系统中的重要组件,常用的有MSMQ,RabbitMq,Kafa,ActiveMQ,RocketMQ.至于各种消息队列的优缺点比较,在这里就不做扩展了,网上资源很多. 更 ...

  9. Zabbix-(六) JMX监控

    Zabbix-(六) JMX监控 一.前言 Zabbix提供了JMX监控,它通过JMX API获取JVM信息,从而提供监控数据.本文讲述使用JMX监控Tomcat的JVM信息. 准备 Zabbix S ...

  10. 【PostMan】批量参数化的用法 之 text/csv

    目的:批量参数化,单个循环多次使用不同的参数请求. 测试数据准备 新建txt文件,输入格式: 首行 --->参数名 其他行 --->测试数据(不同测试数据需要换行) 如下所示,Number ...