相关性算分
  指文档与查询语句间的相关度,通过倒排索引可以获取与查询语句相匹配的文档列表
 
如何将最符合用户查询需求的文档放到前列呢?
  本质问题是一个排序的问题,排序的依据是相关性算分,确定倒排索引哪个文档排在前面
 
影响相关度算分的参数:
  A. TF(Term Frequency):词频,即单词在文档中出现的次数,词频越高,相关度越高,计算公式: tf(t in d) = √frequency
  B. Document Frequency(DF):文档词频, 该词出现在多少篇文档中
  C. IDF(Inverse Document Frequency):倒排文档频度,与文档词频相反,即 1/DF。即单词出现的文档数越少,相关度越高(如果一个单词在文档集出现越少,算为越重要单词),计算公式:idf(t) = 1 + log ( numDocs / (docFreq + 1))
  D. Field-length Norm:字段长度归约, 字段有多长?字段越短,那么其权重就越高。如果一个词条出现在较短的字段,如 title 字段中,那么该字段的内容相比更长的body 字段而言,更有可能是关于该词条的,计算公式: norm(d) = 1 / √numTerms
 
• TF/IDE 模型
                   
  a) score(q, d),文档 d 与查询 q 的相关度分数(relevance score)
  b) queryNorm(q),查询正则因子(query normalization factor)试图将查询正则化,以便可以比较两个不同 query 的结果
  c) coord(q, d),协调因子(coordination factor)
    
  d) tf(t in d),term t 在文档 d 中的词频
  e) idf(t),term t 的逆向文档频率
  f) t.getBoost(),查询中使用的自定义 boost,竞价排名用
  g) norm(t, d),文档 d 的文本长度正则值
 
• BM25 模型(5.X 之后的默认模型)
                  
  a) |D|:文档长度
  b) avgdl:所有文档的平均文档长度
  c) k1,b 是自由参数,lucene 默认 k1=1.2,b=0.75
  d) IDF = log((#Docs - #DocsHit + 0.5)/(#DocsHit + 0.5))
  e) TF = query count in one doc
 
 
 
BM25 相比 TF/IDF 的一大优化是降低了 tf 在过大时的权重,避免词频对查询影响过大

影响ES相关度算分的因素的更多相关文章

  1. ElasticStack学习(九):深入ElasticSearch搜索之词项、全文本、结构化搜索及相关性算分

    一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Ter ...

  2. Elasticsearch从入门到放弃:浅谈算分

    今天来聊一个 Elasticsearch 的另一个关键概念--相关性算分.在查询 API 的结果中,我们经常会看到 _score 这个字段,它就是用来表示相关性算分的字段,而相关性就是描述一个文档和查 ...

  3. Lucene TF-IDF 相关性算分公式(转)

    Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很 ...

  4. 影响pogo pin连接器使用寿命的因素

    精细化.安装简易化及使用寿命长是现在数码电子产品的趋势发展,pogo pin连接器体积小而且弹簧伸缩式设计,可以更好的缩小数码电子产品的尺寸并且连接安装更加的简单方便,因此pogo pin连接器得到了 ...

  5. Solr相似度算法一:Lucene TF-IDF 相关性算分公式

    Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很 ...

  6. Lucene TF-IDF 相关性算分公式

    转自: http://lutaf.com/210.htm Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF- ...

  7. RTMP服务器的延迟,多级边缘不影响延迟,gop为最大因素

    转自:http://blog.chinaunix.net/uid-26000296-id-4932826.html 编码器用FMLE,用手机秒表作为延迟计算. 结论: 1. 影响延迟的三个重要因素:网 ...

  8. UnixBench算分介绍

    关于如何用UnixBench,介绍文章很多,这里就不展开了.这里重点描述下它是如何算分的. 运行参数 碰到很多客户,装好后,直接./Run,就把结果跑出来了,然后还只取最后一个分值,比谁高谁低.下面列 ...

  9. Elasticsearch BM25相关度算法超详细解释

    Photo by Pixabay from Pexels 前言:日常在使用Elasticsearch的搜索业务中多少会出现几次 "为什么这个Doc分数要比那个要稍微低一点?".&q ...

随机推荐

  1. 死磕 java线程系列之线程池深入解析——普通任务执行流程

    (手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本. 注:线程池源码部分如无特殊说明均指ThreadPoolExecutor类. 简介 前面我们一起学习了Java中 ...

  2. egg-middleware 中间件

    Middleware 中间件 Egg 的中间件形式和 Koa 的中间件形式是一样的,都是基于洋葱圈模型.每次我们编写一个中间件,就相当于在洋葱外面包了一层. 编写中间件 写法 我们先来通过编写一个简单 ...

  3. 《JavaScript设计模式与开发实践》-- 发布-订阅模式

    详情个人博客:https://shengchangwei.github.io/js-shejimoshi-fabudingyue/ 发布-订阅模式 1.定义 发布-订阅模式:发布-订阅模式又叫观察者模 ...

  4. FPGA时序约束理解记录

    最近整理了一下时序约束的内容,顺便发出来分享记录一下. 任何硬件想要工作正常,均需满足建立和保持时间,至于这个概念不再陈述. 下面将重点介绍两个概念:建立余量和保持余量.FPGA内部进行时序分析无非就 ...

  5. C++智能指针类型转换

    #include <iostream> #include <memory> struct Base { int a; virtual void f() const { std: ...

  6. LVS NAT模式实践

    client:192.168.4.10/24 proxy:192.168.2.5/24 192.168.4.5/24 web1:192.168.4.100/24 web2:192.168.4.200/ ...

  7. 地精部落:dp

    Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi, ...

  8. 使用springcloud开发测试问题总结

    使用springcloud开发测试 如下描述的问题,没有指明是linux部署的,都是在windows开发环境上部署验证发现的. Issue1配置客户端不使用配置中心 问题描述: 配置客户端使用配置中心 ...

  9. [转载]1.2 UiPath第一个案例Hello World

    1.弹出框Hello World 在弹出的窗口中创建序列 在新建的序列中,在搜索框中输入“Message Box”,Studio自动搜索出结果. 选中“Message Box”,然后拖拽到界面带+号区 ...

  10. vue-snippet-模板

    "template": { "prefix": "template", "body": [ "<temp ...