The Fair Nut and Rectangles

题意:有n个矩形,然后你可以选择k个矩形,选择一个矩形需要支付代价 ai, 问 总面积- 总支付代价 最大能是多少, 保证没有矩形套矩形。

题解:

sort 一下 只有  x 会递增  y 递减

然后 f[i] = f[j] + (x[i]-x[j])*y[i] - a[i]

f[j] = f[i] - x[i] * y[i] + x[j] * y[i] + a[i]

即 y = f[j], x = x[j], k = y[i],  b = f[i] - x[i] * y[i] + a[i]

我们需要维护 f[i] 尽可能大, 所以我们维护一个上突壳就好了。

代码:

#include<bits/stdc++.h>
using namespace std;
#define Fopen freopen("_in.txt","r",stdin); freopen("_out.txt","w",stdout);
#define LL long long
#define ULL unsigned LL
#define fi first
#define se second
#define pb push_back
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
#define max3(a,b,c) max(a,max(b,c))
#define min3(a,b,c) min(a,min(b,c))
typedef pair<int,int> pll;
const int inf = 0x3f3f3f3f;
const int _inf = 0xc0c0c0c0;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const LL _INF = 0xc0c0c0c0c0c0c0c0;
const LL mod = (int)1e9+;
const int N = 1e6 + ;
struct Node{
int x, y;
LL a;
bool operator < (const Node & z) const{
return x < z.x;
}
}A[N];
LL f[N];
int q[N];
int main(){
int n;
scanf("%d", &n);
for(int i = ; i <= n; ++i)
scanf("%d%d%lld", &A[i].x, &A[i].y, &A[i].a);
sort(A+, A++n);
int L = , R = ;
for(int i = ; i <= n; ++i){
while(L < R && f[q[L+]]-f[q[L]]>= 1ll*A[i].y * ((A[q[L+]].x - A[q[L]].x))) ++L;
f[i] = f[q[L]] + (1ll*A[i].x-A[q[L]].x)*A[i].y - A[i].a;
while(L < R && ((long double)f[q[R]]-f[q[R-]]) * (A[i].x - A[q[R]].x) <= ((long double)f[i]-f[q[R]]) * ((A[q[R]].x - A[q[R-]].x))) --R;
q[++R] = i;
}
LL ans = ;
for(int i = ; i <= n; ++i) ans = max(ans, f[i]);
cout << ans << endl;
return ;
}

CodeForces 1083 E The Fair Nut and Rectangles 斜率优化DP的更多相关文章

  1. CF1083E The Fair Nut and Rectangles

    CF1083E The Fair Nut and Rectangles 给定 \(n\) 个平面直角坐标系中左下角为坐标原点,右上角为 \((x_i,\ y_i)\) 的互不包含的矩形,每一个矩形拥有 ...

  2. CF 1083 A. The Fair Nut and the Best Path

    A. The Fair Nut and the Best Path https://codeforces.com/contest/1083/problem/A 题意: 在一棵树内找一条路径,使得从起点 ...

  3. CF 1083 B. The Fair Nut and Strings

    B. The Fair Nut and Strings 题目链接 题意: 在给定的字符串a和字符串b中找到最多k个字符串,使得不同的前缀字符串的数量最多. 分析:  建出trie树,给定的两个字符串就 ...

  4. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

  5. Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...

  6. Codeforces 1067D - Computer Game(矩阵快速幂+斜率优化)

    Codeforces 题面传送门 & 洛谷题面传送门 好题. 首先显然我们如果在某一次游戏中升级,那么在接下来的游戏中我们一定会一直打 \(b_jp_j\) 最大的游戏 \(j\),因为这样得 ...

  7. Codeforces 1083E The Fair Nut and Rectangles

    Description 有\(N\)个左下定点为原点的矩阵, 每个矩阵\((x_i,~y_i)\)都有一个数\(a_i\)表示其花费. 没有一个矩阵包含另一个矩阵. 现要你选出若干个矩阵, 使得矩阵组 ...

  8. 【Codeforces 1083A】The Fair Nut and the Best Path

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 我们最后要的是一条最长的路径. 这条路径的权值和是所有点的权值和-所有边的权值和且这个值最大. 显然如果我们在某一条边上的累计的权值和< ...

  9. Codeforces 856D - Masha and Cactus(树链剖分优化 dp)

    题面传送门 题意: 给你一棵 \(n\) 个顶点的树和 \(m\) 条带权值的附加边 你要选择一些附加边加入原树中使其成为一个仙人掌(每个点最多属于 \(1\) 个简单环) 求你选择的附加边权值之和的 ...

随机推荐

  1. Ping、Traceroute工作原理

    在工作开发过程中,我们经常会使用到ping和traceroute.在这里,我们将细述其工作原理,让你在会用的基础之上理解其内部工作过程. ICMP应用实例--Ping Ping 是 ICMP 的一个重 ...

  2. 在 alpine 中使用 NPOI

    在 alpine 中使用 NPOI Intro 在 .net 中常使用 NPOI 来做 Excel 的导入导出,NPOI 从 2.4.0 版本开始支持 .netstandard2.0,对于.net c ...

  3. MySQL-5.7.21非图形化下载、安装、连接问题记录

    1.安装包下载链接:https://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7.21-winx64.zip 官网:https://www.mysql.co ...

  4. Vue监听键盘回车事件

    在写页面时遇见了登录页需要加一个键盘回车事件. vue 的 v-on中有这样的修饰符 <input v-on:keyup.enter="submit"> 即<in ...

  5. 同时运行多个 tomcat 修改端口

    修改 tomcat 配置文件,路径: tomcat_home/conf/server.xml  1.HTTP端口,默认8080,如下改为8081 <Connector connectionTim ...

  6. Quartz CronTrigger定时器表达式大全

    CronTrigger是基于Calendar-like调度的.当你需要在除星期六和星期天外的每天上午10点半执行作业时,那么应该使用CronTrigger.正如它的名字所暗示的那样,CronTrigg ...

  7. 【Java例题】2.1复数类

    1.定义复数类,包括实部和虚部变量.构造方法. 加减乘除方法.求绝对值方法和显示实部.虚部值的方法. 然后编写一个主类,在其主方法中通过定义两个复数对象来 显示每一个复数的实部值.虚部值和绝对值, 显 ...

  8. Salesforce LWC学习(三) import & export / api & track

    我们使用vs code创建lwc 时,文件会默认生成包含 template作为头的html文件,包含了 import LightningElement的 js文件以及对应的.js-meta.xml文件 ...

  9. Flink 源码解析 —— 源码编译运行

    更新一篇知识星球里面的源码分析文章,去年写的,周末自己录了个视频,大家看下效果好吗?如果好的话,后面补录发在知识星球里面的其他源码解析文章. 前言 之前自己本地 clone 了 Flink 的源码,编 ...

  10. 算法与数据结构基础 - 分治法(Divide and Conquer)

    分治法基础 分治法(Divide and Conquer)顾名思义,思想核心是将问题拆分为子问题,对子问题求解.最终合并结果,分治法用伪代码表示如下: function f(input x size ...