题目描述

单源最短路径模板。

使用 SPFA 肯定是不行的啦,网格图hack。

所以我们使用 Dijkstra 算法。

这里有一篇写的很好的 blog,无必要赘述。最后贴上代码。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
#include<algorithm> #define reg register struct node{
int x,y,d,next;
}e[500010];
int len=0;
int first[500010];
int ST;
int f[500010];
int s1,s2,s3;
int n,m;
bool v[500010];
struct nod{
int x,d;
friend bool operator<(const nod&a,const nod&b){
return a.d>b.d;
}
};
std::priority_queue<nod> q; void ins(int x,int y,int d){
e[++len].x=x;e[len].y=y;e[len].d=d;
e[len].next=first[x];first[x]=len;
}
void dijkstra(){
while(!q.empty()){
nod eg=q.top();q.pop();
int x=eg.x;
if(v[x]) continue;
v[x]=1;f[x]=eg.d;
for(reg int i=first[x];i;i=e[i].next){
int y=e[i].y;
if(f[y]>f[x]+e[i].d){
f[y]=f[x]+e[i].d;
q.push((nod){y,f[y]});
}
}
}
}
int main(){
scanf("%d%d%d",&n,&m,&ST);
memset(v,0,sizeof(v));f[ST]=0;
for(reg int i=2;i<=n;++i) f[i]=1061109567;
for(reg int i=1;i<=m;++i){
scanf("%d%d%d",&s1,&s2,&s3);
ins(s1,s2,s3);
}
q.push((nod){ST,0});
dijkstra();
for(reg int i=1;i<=n;++i)
printf("%d ",f[i]>=1061109567?2147483647:f[i]);
}

luoguP4779 【模板】单源最短路径的更多相关文章

  1. [模板]单源最短路径(Dijkstra)

    如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 主要还是再打一遍最短路,这种算法我用的不多... #include<bits/stdc++.h> using namesp ...

  2. 【洛谷 p3371】模板-单源最短路径(图论)

    题目:给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 解法:spfa算法. 1 #include<cstdio> 2 #include<cstdlib> 3 #in ...

  3. 洛谷P3371 【模板】单源最短路径

    P3371 [模板]单源最短路径 282通过 1.1K提交 题目提供者HansBug 标签 难度普及/提高- 提交  讨论  题解 最新讨论 不萌也是新,老司机求带 求看,spfa跑模板40分 为什么 ...

  4. Luogu 3371【模板】单源最短路径

    Luogu 3371[模板]单源最短路径 第一次写博客用图论题来试一试 接下来是正文部分 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包 ...

  5. 最短路径 SPFA P3371 【模板】单源最短路径(弱化版)

    P3371 [模板]单源最短路径(弱化版) SPFA算法: SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复 ...

  6. P4779 【模板】单源最短路径(标准版)

    P4779 [模板]单源最短路径(标准版) 求单源最短路, 输出距离 Solution \(nlogn\) 堆优化 \(Djs\) Code #include<iostream> #inc ...

  7. 洛谷 P3371 【模板】单源最短路径

    P3371 [模板]单源最短路径 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出 ...

  8. 洛谷 P4779【模板】单源最短路径(标准版)

    洛谷 P4779[模板]单源最短路径(标准版) 题目背景 2018 年 7 月 19 日,某位同学在 NOI Day 1 T1 归程 一题里非常熟练地使用了一个广为人知的算法求最短路. 然后呢? 10 ...

  9. 洛谷 P4779 【模板】单源最短路径(标准版) 题解

    P4779 [模板]单源最短路径(标准版) 题目背景 2018 年 7 月 19 日,某位同学在 NOI Day 1 T1 归程 一题里非常熟练地使用了一个广为人知的算法求最短路. 然后呢? 100 ...

随机推荐

  1. mysql解压版服务启动方式

    使用mysql解压版,在不安装为windows服务时,使用下面的方式启动. 1.打开命令行,首先进入mysql解压目录的bin目录下 d:\mysql\bin 2.输入mysqld --console ...

  2. Day 9 用户管理

    1.什么是用户? 能正常登陆系统的都算用户 windows系统和linux系统的用户有什么区别? 本质上没有区别, linux支持多个用户同一时刻登陆系统, 互相之间不影 响 而windows只允许同 ...

  3. FlutterGo 后端知识点提炼:midway+Typescript+mysql(sequelize)

    前言 关于 FlutterGo 或许不用太多介绍了. 如果有第一次听说的小伙伴,可以移步FlutterGo官网查看下简单介绍. FlutterGo 在这次迭代中有了不少的更新,笔者在此次的更新中,负责 ...

  4. Jenkins 结合 Docker 为 .NET Core 项目实现低配版的 CI&CD

    随着项目的不断增多,最开始单体项目手动执行 docker build 命令,手动发布项目就不再适用了.一两个项目可能还吃得消,10 多个项目每天让你构建一次还是够呛.即便你的项目少,每次花费在发布上面 ...

  5. 关于java属性字段命名

    最近项目定义vo的时候,boolean类型数据定义成isProperty类型的,导致系统间数据交互过程中报错. 网上爬了良久: JavaBean命名规范里面规定,对于primitive和自定义类类型的 ...

  6. Scala函数式编程(三) scala集合和函数

    前情提要: scala函数式编程(二) scala基础语法介绍 scala函数式编程(二) scala基础语法介绍 前面已经稍微介绍了scala的常用语法以及面向对象的一些简要知识,这次是补充上一章的 ...

  7. css实现斜角效果

    重点代码: 使用一张图片盖住div,实现斜角效果 .triangle { position: absolute; top:; left:; width: 36px; height: 36px; bac ...

  8. Windows和Linux下scrapy框架的安装

    windows下安装: 1.安装Anaconda环境管理工具 也可以使用pip安装,值得注意的是如果你使用的是pip安装,你需要解决相应的包依赖(解决依赖一般会让你怀疑人生.怀疑scrapy,建议还是 ...

  9. 虚拟现实研究经典问卷Presence Questionnaire (PQ) 详细介绍

    虚拟现实(VR)是一种沉浸式体验,它的作用就是将用户完全包裹在一个人为构建出的(数字)虚拟世界中,让用户在这个新环境中得到不一样的体验,或完成一些现实中不能完成的任务.所以让体验者相信“我身处此中”非 ...

  10. abp(net core)+easyui+efcore实现仓储管理系统——EasyUI之货物管理三 (二十一)

    abp(net core)+easyui+efcore实现仓储管理系统目录 abp(net core)+easyui+efcore实现仓储管理系统——ABP总体介绍(一) abp(net core)+ ...