磐创智能-专注机器学习深度学习的教程网站 http://panchuang.net/

磐创AI-智能客服,聊天机器人,推荐系统 http://panchuangai.com/

【导读】:Github是全球最大的开源代码社区,本文为大家总结了2108年11月最热门的机器学习项目top5。欢迎大家点击上方蓝字关注我们的公众号:磐创AI,获取更多的机器学习、深度学习资源。

本文是近期Github热点项目的汇总,如果你想了解更多优秀的github项目,请关注我们公众号的github系列文章。

推荐 | 7个你最应该知道的机器学习相关github项目

热点 | 六月Github热点项目库总结

热点 | 四月最佳Github项目库与最有趣Reddit热点讨论(文末免费送百G数据集)

No1:Open AI’s Deep Reinforcement Learning Resource(https://github.com/openai/spinningup)

强化学习(RL)是一种机器学习方法,是智能体(agent)以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使智能体获得最大的奖赏。深度强化学习是指强化学习与深度学习的结合。

这个开源的OpenAI的强化学习资源库包含各种有用的深度强化学习资源,目的是使强化学习变得更容易学习,受到了广泛的欢迎。包含的具体资源有:

  • 强化学习概念、算法种类和基本理论介绍
  • 一篇关于如何成长为强化学习研究角色员的文章
  • 按主题分类的强化学习经典论文的列表
  • 对关键算法实现的代码回放
  • 一些热身的上手项目

一切从https://github.com/openai/spinningup开始吧!

No2:NVIDIA’s WaveGlow(https://github.com/NVIDIA/waveglow)

WaveGlow是一个基于流的语音合成网络,能够从梅尔声谱(mel-spectrograms)生成高质量的语音。WaveGlow最初是由瑞安·普林格、拉斐尔·瓦尔和布莱恩·卡坦扎罗在一篇论文中提出的,它结合了Glow和WaveNet的见解,目的是为了提供快速、高效和高质量的音频合成,而不需要自回归。WaveGlow只使用单个网络实现,只使用单个代价函数进行训练:最大化训练数据的可能性,这使得训练过程简单而稳定。

基于PyTorch的实现是在NVIDIA V100 GPU的基础上以,以2750kHz的速率产生的音频样本。据平均评分显示,它提供的音频质量与最好的公开可用的WaveNet一样好。如果您想要深入研究,可以访问音频样本文章以及查看该论文:

https://nv-adlr.github.io/WaveGlow

https://arxiv.org/abs/1811.00002

No3:BERT as a Service(https://github.com/hanxiao/bert-as-service)

上篇文章我们讨论了BERT的PyTorch实现:(https://github.com/codertimo/BERT-pytorch

。我们知道BERT是由Google开发的用于训练语言表示的NLP模型,它运用了网络上大量的公开纯文本数据,并以无监管的方式进行训练。此外,BERT代表了来自变压器的双向编码器表示,是一种训练语言表示的方法。BERT模型的预训练对于每种语言来说都是一次性的过程。

句子编码(Sentence Encoding)是许多自然语言处理应用(如情感分析、文本分类)中所必须的任务,目的是将可变长度的句子表示为固定长度的向量。而本github将围绕句子编码器“bert-as-service”展开讨论,并通过ZeroMQ将其作为服务托管,允许您仅用两行代码将句子映射到固定长度的表示中。

No4:Python Implementation of Google’s ‘Quick Draw’ Game(https://github.com/1991viet/QuickDraw)

QuickDraw是一款最近非常流行的在线游戏。它是由谷歌开发,其中神经网络试图猜测你在画什么。神经网络会从每幅图画中学习,进而提高了正确猜测涂鸦的能力。此外,开发人员已经根据用户先前绘制的图纸数量建立了一个巨大的数据集。这个开源数据集的地址如下:https://github.com/googlecreativelab/quickdraw-dataset。

现在,我们可以用这个github库在Python中构建自己的QuickDraw游戏。项目中会教我们如何一步一步去实现(https://github.com/1991viet/QuickDraw),基于此代码,我们还可以运行一个应用程序,可以在计算机的摄像头前绘制,也可以在画布上绘制。

No5:Visualizing and Understanding GANs(https://github.com/CSAILVision/gandissect)

GAN Dissection是由麻省理工学院的计算机科学和人工智能实验室的研究人员开创的,是一种独特的可视化和理解生成对抗网络(GAN)神经元的方法。不仅限于此,研究人员还创建了GANPaint来展示GAN Dissection是如何工作的,以了解内部单元如何工作,这将有助于我们通过检查和操纵特定GAN模型的内部神经元来探索其学习内容。

如果对GAN Dissection感兴趣的小伙伴,赶紧点击下面的链接,进入GitHub库直接进入代码练习吧!(https://github.com/CSAILVision/gandissect)

磐创智能-专注机器学习深度学习的教程网站 http://panchuang.net/

磐创AI-智能客服,聊天机器人,推荐系统 http://panchuangai.com/

近期 github 机器学习热门项目top5的更多相关文章

  1. 近期 github 机器学习热门项目 top5

    欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 作者:Walker No1:NVIDIA's vid2vid Technique( ...

  2. 七大Github机器学习热门项目

    译者 | 小韩 来源 | analyticsvidhya.com[磐创AI导读]:让我们一起来看下近期热门的机器学习Github仓库,包括了自然语言处理(NLP).计算机视觉(CV)与大数据等多个领域 ...

  3. 盘点当下大热的7大Github机器学习创新项目

    哪个平台有最新的机器学习发展现状和最先进的代码?没错——Github!本文将会分享近期发布的七大GitHub机器学习项目.这些项目广泛覆盖了机器学习的各个领域,包括自然语言处理(NLP).计算机视觉. ...

  4. 推荐|近期热点机器学习git项目

    No1: InterpretML by Microsoft--Machine Learning Interpretability github地址:https://github.com/microso ...

  5. 干货 | 近期热点机器学习git项目

    No1:PyTorchImplementation of DeepMind's BigGAN(https://github.com/huggingface/pytorch-pretrained-Big ...

  6. github上热门深度学习项目

    github上热门深度学习项目 项目名 Stars 描述 TensorFlow 29622 使用数据流图进行可扩展机器学习的计算. Caffe 11799 Caffe:深度学习的快速开放框架. [Ne ...

  7. 2016年GitHub排名前20的Python机器学习开源项目(转)

    当今时代,开源是创新和技术快速发展的核心.本文来自 KDnuggets 的年度盘点,介绍了 2016 年排名前 20 的 Python 机器学习开源项目,在介绍的同时也会做一些有趣的分析以及谈一谈它们 ...

  8. 如何找GitHub上热门的开源项目

    访问:https://github.com/trending,选择时间段和关联语言就可以查看最近热门的项目. Java最近一个月热门项目如下:

  9. 热点 | 近期Github热点项目库总结

    整理 | Walker 介绍:你有没有想过你会成为一个艺术家,但无奈你不知道如何画画?得益于计算机视觉技术,你可以在ML社区轻松实现这个梦想.更棒的是,Github上ML社区的代码都是开源的! 这就是 ...

随机推荐

  1. 算发帖——俄罗斯方块覆盖问题一共有多少个解

    问题的提出:如下图,用13块俄罗斯方块覆盖8*8的正方形.   那么一共可以有多少个解呢?(若通过旋转.翻转一个解而得到的新解,则两个解视为同一个解)   首先,求解的问题,已经在上一篇帖子里完成 算 ...

  2. C++走向远洋——27(项目三,时间类)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:time.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  3. 参考C# 使用 System.Web.Script.Serialization 解析 JSON

    参考C# 使用 System.Web.Script.Serialization 解析 JSON 使用json需要引用到System.Web.Script.Serialization.习惯在解决方案右键 ...

  4. 达拉草201771010105《面向对象程序设计(java)》第八周学习总结

    达拉草201771010105<面向对象程序设计(java)>第八周学习总结 实验六接口的定义与使用 实验时间 2018-10-18 1.实验目的与要求 (1) 掌握接口定义方法: (2) ...

  5. swoole(1)使用docker安装swoole环境

    1.下载镜像 pull php 镜像 docker pull php:7.3-alpine3.8 创建容器 docker run -it --name test php:7.3-alpine3.8 s ...

  6. 记一次crontab执行和日志生成问题

    一.crontab未执行 crontab里面设置定时任务如下: 1 19 * * * /usr/bin/python3 /home/nola/a.py > /home/nola/logs/a_l ...

  7. Python-Requests库的安装和调用

    #使用pip或者pip3安装requests库pip3 install requests #requests库:python #输入python进入命令行模式在cmd命令行中依次运行以下代码,或者直接 ...

  8. JavaScript的数组系列

    数组 今天逆战班的学习主题关于Javascript的数组,主要有数组的概念.创建.分类.方法.遍历.经典算法...... 一.数组是什么呢?怎么写数组呢?数组有多少种呢? 数组的概念 对象是属性的无序 ...

  9. 迄今为止最硬核的「Java8时间系统」设计原理与使用方法

    为了使本篇文章更容易让读者读懂,我特意写了上一篇<任何人都需要知道的「世界时间系统」构成原理,尤其开发人员>的科普文章.本文才是重点,绝对要读,走起! Java平台时间系统的设计方案 几乎 ...

  10. Falsk 路由简析

    添加路由 我们熟知添加路由的方式是装饰器: @app.route('/') def hello_world(): return 'Hello World!' #访问web得到 'Hello World ...