ACM-Checker Challenge
Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so that one and only one is placed in each row and each column, and there is never more than one in any diagonal. (Diagonals run from southeast to northwest and southwest to northeast and include all diagonals, not just the major two.)
Column
1 2 3 4 5 6
-------------------------
1 | | O | | | | |
-------------------------
2 | | | | O | | |
-------------------------
3 | | | | | | O |
-------------------------
4 | O | | | | | |
-------------------------
5 | | | O | | | |
-------------------------
6 | | | | | O | |
-------------------------
The solution shown above is described by the sequence 2 4 6 1 3 5, which gives the column positions of the checkers for each row from 1 to 6:
ROW | 1 | 2 | 3 | 4 | 5 | 6 |
COLUMN | 2 | 4 | 6 | 1 | 3 | 5 |
This is one solution to the checker challenge. Write a program that finds all unique solution sequences to the Checker Challenge (with ever growing values of N). Print the solutions using the column notation described above. Print the the first three solutions in numerical order, as if the checker positions form the digits of a large number, and then a line with the total number of solutions.
Special note: the larger values of N require your program to be especially efficient. Do not precalculate the value and print it (or even find a formula for it); that's cheating. Work on your program until it can solve the problem properly.
输入
A single line that contains a single integer N (6 <= N <= 13) that is the dimension of the N x N checkerboard.
输出
The first three lines show the first three solutions found, presented as N numbers with a single space between them. The fourth line shows the total number of solutions found.
样例输入
6
样例输出
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
解题思路:N皇后问题,一般的DFS会超时,用位运算才可以A。
////// Checker Challenge.cpp : 定义控制台应用程序的入口点。
//////
////
#include "stdafx.h"
////
////
////#include <stdio.h>
////#include <math.h>
////#include <string.h>
////
////int n, ans;
////int res[15],save[15];
////
////struct R
////{
//// int r[15][15];
////
////}R[15];
////
////void DFS(int i)
////{
//// if (i == n)
//// {
//// ans++;
//// if (ans <= 3)
//// {
//// memcpy(R[n].r[ans-1], res, sizeof(res));
//// }
//// return;
//// }
////
//// for (int k = 0; k < n; k++)//遍历所有列
//// {
//// int j;
//// for (j = 0; j < i; j++)//和已经放好的皇后位置比较
//// {
//// if (k == res[j]) break;
//// if (abs(k - res[j]) == i - j) break;
//// }
//// if (j >= i)
//// {
//// res[i] = k;
//// DFS(i + 1);
//// }
//// }
////}
////
////int main()
////{
//// for (n = 0; n <= 13; n++)
//// {
//// ans = 0;
//// DFS(0);
//// save[n] = ans;
////
//// }
//// while (scanf("%d",&n)!=EOF)
//// {
////
//// for (int j = 0; j < 3; j++)
//// {
//// for (int i = 0; i < n; i++)
//// {
//// if (i != n-1) printf("%d ", R[n].r[j][i] + 1);
////
//// else printf("%d\n", R[n].r[j][i] + 1);
//// }
//// }
//// printf("%d\n", save[n]);
////
//// }
////} //简化的思想:
//用位运算代替for循环遍历每个皇后的位置
//用垂直、对角线、斜对角线的位运算 /*整个逻辑:
//1.求将要放入皇后的位置
//2.更新可放皇后的位置
//3.DFS循环*/ #include <stdio.h> int n,ans,uplimit,res[]; int binary2(int num)
{
int ans = ;
while (num)
{
num = num >> ;
ans++;
}
return ans;
} void DFS(int i,int vertical, int diagonal, int antidiagonal)
{
if (i >= n)
{
ans++;
if (ans <=)
{
//输出结果
for (int i = ; i < n; i++)
{
if (i != n-) printf("%d ", res[i]);
else printf("%d\n", res[i]);
}
}
return;
}
int avail = uplimit & (~(vertical | diagonal | antidiagonal));
while (avail)
{
int pos = avail & (-avail);
avail = avail - pos;
res[i] = binary2(pos);
DFS(i + ,vertical + pos, (diagonal + pos) << , (antidiagonal + pos) >> );
} } int main()
{
while (scanf("%d", &n) != EOF)
{
ans = ;
uplimit = ( << n) - ;
DFS(, , , );
printf("%d\n", ans);
}
return ;
}
ACM-Checker Challenge的更多相关文章
- USACO1.5 Checker Challenge(类n皇后问题)
B - B Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu Description E ...
- USACO 6.5 Checker Challenge
Checker Challenge Examine the 6x6 checkerboard below and note that the six checkers are arranged on ...
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- TZOJ 3522 Checker Challenge(深搜)
描述 Examine the 6x6 checkerboard below and note that the six checkers are arranged on the board so th ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- Checker Challenge跳棋的挑战(n皇后问题)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- USACO training course Checker Challenge N皇后 /// oj10125
...就是N皇后 输出前三种可能排序 输出所有可能排序的方法数 vis[0][i]为i点是否已用 vis[1][m+i]为i点副对角线是否已用 m+i 为从左至右第 m+i 条副对角线 vis[1] ...
- N皇后问题2
Description Examine the checkerboard below and note that the six checkers are arranged on the board ...
- USACO 完结的一些感想
其实日期没有那么近啦……只是我偶尔还点进去造成的,导致我没有每一章刷完的纪念日了 但是全刷完是今天啦 讲真,题很锻炼思维能力,USACO保持着一贯猎奇的题目描述,以及尽量不用高级算法就完成的题解……例 ...
随机推荐
- JS enter键一键登录
$("body").keydown(function (event) { ) { //enter键键值为13 $('.finish-btn').click(); // $('.fi ...
- JS中的鼠标移入移除监控操作
有些时候我们需要通过页面来监控用户的行为,包括鼠标操作键盘操作,本文章介绍的是鼠标的操作监控: <script> window.onload = function(){ var oDiv ...
- JavaScript--选择器
1.选择器是jQuery的根基,在jQuery中,对事件处理,遍历DOM和Ajax操作都依赖于选择器. 2.选择的优点: --写法简洁: --完善的事件处理机制. 3.基本选择器: --基本选择器是j ...
- SSM-Maven配置
全配置 新建项目 新建文件夹 - src - main - java - resources - webapp - WEB-INF - index.jsp - pom.xml <?xml ver ...
- Java自动检测文件编码(字符集)
// 使用之前请调用getAllDetectableCharsets()检查是否满足要求,中文仅有{gb18030, big5,utf-*}import com.ibm.icu.text.Charse ...
- angularJS MVVM
- tensorflow实现线性模型和sklearn的线性模型比较
自己用tensorflow实现了linear模型,但是和sklearn提供的模型效果相比,实验结果差了很多,所以尝试了修改优化算法,正则化,损失函数和归一化,记录尝试的所有过程和自己的实验心得. im ...
- JuJu团队1月7号工作汇报
JuJu团队1月7号工作汇报 JuJu 周六周日放假,所以空了两天~ Scrum 团队成员 今日工作 剩余任务 困难 飞飞 完成data process readme部分 实现三维Dense 无 ...
- JuJu团队1月2号工作汇报
JuJu团队1月2号工作汇报 JuJu Scrum 团队成员 今日工作 剩余任务 困难 飞飞 -- 测试dataloader 无 婷婷 调试代码 提升acc 无 恩升 -- 测试dataloade ...
- shiro缓存配置
realm的缓存 方法一: 在securityManager配置中添加cacheManager配置项,会注入到realm中. 方法二:在realm中配置. realm本身实现了CacheManager ...