列表/元组/字典/集合都是容器。对于容器,可以很直观地想象成多个元素在一起的单元;而不同容器的区别,正是在于内部数据结构的实现方法。

所有的容器都是可迭代的(iterable)。另外字符串也可以被迭代。

迭代器类比

迭代可以想象成是你去买苹果,卖家并不告诉你他有多少库存。这样,每次你都需要告诉卖家,你要一个苹果,然后卖家采取行为:要么给你拿一个苹果;要么告诉你,苹果已经卖完了。你并不需要知道,卖家在仓库是怎么摆放苹果的。

严谨地说,迭代器(iterator)提供了一个 next(可以不重复不遗漏地一个一个拿到所有元素) 的方法。调用这个方法后,你要么得到这个容器的下一个对象,要么得到一个 StopIteration 的错误(苹果卖完了)。

示例,判断是否可迭代

from collections.abc import Iterable

params = [
1234,
'1234',
[1, 2, 3, 4],
set([1, 2, 3, 4]),
{1:1, 2:2, 3:3, 4:4},
(1, 2, 3, 4)
] for param in params:
print('{} is iterable? {}'.format(param, isinstance(param, Iterable))) # 输出
# 1234 is iterable? False
# 1234 is iterable? True
# [1, 2, 3, 4] is iterable? True
# {1, 2, 3, 4} is iterable? True
# {1: 1, 2: 2, 3: 3, 4: 4} is iterable? True
# (1, 2, 3, 4) is iterable? True

生成器类比

生成器可以想象成是你去买苹果,卖家并没有库存。这样,每次你都需要告诉卖家,你要一个苹果,然后卖家采取行为,立马生成 1 个苹果(生成速度极快):要么给你拿一个苹果;要么告诉你,苹果已经卖完了。

生成器是懒人版本的迭代器

示例,迭代器与生成器的对比

import os
import psutil
import time
import functools def log_execution_time(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
start = time.perf_counter()
res = func(*args, **kwargs)
end = time.perf_counter()
print('{} took {} ms'.format(func.__name__, (end - start) * 1000))
return res
return wrapper # 显示当前 python 程序占用的内存大小
def show_memory_info(hint):
pid = os.getpid()
p = psutil.Process(pid) info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(hint, memory)) @log_execution_time
def test_iterator():
show_memory_info('initing iterator')
list_1 = [i for i in range(100000000)]
show_memory_info('after iterator initiated')
print(sum(list_1))
show_memory_info('after sum called') @log_execution_time
def test_generator():
show_memory_info('initing generator')
list_2 = (i for i in range(100000000))
show_memory_info('after generator initiated')
print(sum(list_2))
show_memory_info('after sum called') test_iterator()
print()
test_generator() ########## 输出 ##########
# initing iterator memory used: 10.16796875 MB
# after iterator initiated memory used: 3664.34765625 MB
# 4999999950000000
# after sum called memory used: 3664.34765625 MB
# test_iterator took 6179.794754018076 ms # initing generator memory used: 19.140625 MB
# after generator initiated memory used: 19.14453125 MB
# 4999999950000000
# after sum called memory used: 19.171875 MB
# test_generator took 4912.561981996987 ms

迭代器是一个有限集合,生成器则可以成为一个无限集

我们并不需要在内存中同时保存这么多东西,比如对元素求和,我们只需要知道每个元素在相加的那一刻是多少就行了,用完就可以扔掉了。

于是,生成器的概念应运而生,在你调用 next() 函数的时候,才会生成下一个变量。生成器在 Python 的写法是用小括号括起来,(i for i in range(100000000)),即初始化了一个生成器。

这样一来,你可以清晰地看到,生成器并不会像迭代器一样占用大量内存,只有在被使用的时候才会调用。而且生成器在初始化的时候,并不需要运行一次生成操作,相比于 test_iterator() test_generator() 函数节省了一次生成一亿个元素的过程,因此耗时明显比迭代器短。

示例,数学中有一个恒等式,(1 + 2 + 3 + ... + n)^2 = 1^3 + 2^3 + 3^3 + ... + n^3 的证明

def generator(k):
i = 1
while True:
yield i ** k
i += 1 gen_1 = generator(1)
gen_3 = generator(3)
print(gen_1)
print(gen_3) def get_sum(n):
sum_1, sum_3 = 0, 0
for i in range(n):
next_1 = next(gen_1)
next_3 = next(gen_3)
print('next_1 = {}, next_3 = {}'.format(next_1, next_3))
sum_1 += next_1
sum_3 += next_3
print(sum_1 * sum_1, sum_3) get_sum(8) ########## 输出 ##########
# <generator object generator at 0x10c30d3d0>
# <generator object generator at 0x10c6d61d0>
# next_1 = 1, next_3 = 1
# next_1 = 2, next_3 = 8
# next_1 = 3, next_3 = 27
# next_1 = 4, next_3 = 64
# next_1 = 5, next_3 = 125
# next_1 = 6, next_3 = 216
# next_1 = 7, next_3 = 343
# next_1 = 8, next_3 = 512
# 1296 1296

接下来的 yield 是魔术的关键。对于初学者来说,你可以理解为,函数运行到这一行的时候,程序会从这里暂停,然后跳出,不过跳到哪里呢?答案是 next() 函数。那么 i ** k 是干什么的呢?它其实成了 next() 函数的返回值。这样,每次 next(gen) 函数被调用的时候,暂停的程序就又复活了,从 yield 这里向下继续执行;同时注意,局部变量 i 并没有被清除掉,而是会继续累加。我们可以看到 next_1 从 1 变到 8,next_3 从 1 变到 512。

示例,给定两个序列,判定第一个是不是第二个的子序列。

LeetCode 链接如下:https://leetcode.com/problems/is-subsequence/

先来解读一下这个问题本身。序列就是列表,子序列则指的是,一个列表的元素在第二个列表中都按顺序出现,但是并不必挨在一起。举个例子,[1, 3, 5] 是 [1, 2, 3, 4, 5] 的子序列,[1, 4, 3] 则不是。

def is_subsequence(ls, sub):
ls = iter(ls)
return all(i in ls for i in sub) print(is_subsequence([1, 2, 3, 4, 5],[1, 3, 5]))
print(is_subsequence([1, 2, 3, 4, 5],[1, 4, 3])) ########## 输出 ########## # True
# False

python 进阶篇 迭代器和生成器深入理解的更多相关文章

  1. Python进阶之迭代器和生成器

    可迭代对象 Python中任意的对象,只要它定义了可以返回一个迭代器的__iter__方法,或者定义了可以支持下标索引的__getitem__方法,那么它就是一个可迭代对象.简单来说,可迭代对象就是能 ...

  2. python进阶篇

    python进阶篇 import 导入模块 sys.path:获取指定模块搜索路径的字符串集合,可以将写好的模块放在得到的某个路径下,就可以在程序中import时正确找到. ​ import sys ...

  3. python设计模式之迭代器与生成器详解(五)

    前言 迭代器是设计模式中的一种行为模式,它提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示.python提倡使用生成器,生成器也是迭代器的一种. 系列文章 python设计模 ...

  4. Python入门篇-解析式、生成器

    Python入门篇-解析式.生成器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.列表解析式(List Comprehension) 1>.列表解析式语法 语法 [ 返回 ...

  5. python is、==区别;with;gil;python中tuple和list的区别;Python 中的迭代器、生成器、装饰器

    1. is 比较的是两个实例对象是不是完全相同,它们是不是同一个对象,占用的内存地址是否相同 == 比较的是两个对象的内容是否相等 2. with语句时用于对try except finally 的优 ...

  6. Python 闭包、迭代器、生成器、装饰器

    Python 闭包.迭代器.生成器.装饰器 一.闭包 闭包:闭包就是内层函数对外层函数局部变量的引用. def func(): a = "哈哈" def func2(): prin ...

  7. 终于理解Python中的迭代器和生成器了!

    迭代器和生成器 目录 迭代器和生成器 可迭代对象和迭代器 基础概念 判断 for循环本质 不想用for循环迭代了,如何使用迭代器? 列表推导式 生成器Generator 概念 如何实现和使用? 生成器 ...

  8. Python进阶:迭代器与迭代器切片

    2018-12-31 更新声明:切片系列文章本是分三篇写成,现已合并成一篇.合并后,修正了一些严重的错误(如自定义序列切片的部分),还对行文结构与章节衔接做了大量改动.原系列的单篇就不删除了,毕竟也是 ...

  9. Python基础之迭代器和生成器

    阅读目录 楔子 python中的for循环 可迭代协议 迭代器协议 为什么要有for循环 初识生成器 生成器函数 列表推导式和生成器表达式 本章小结 生成器相关的面试题 返回顶部 楔子 假如我现在有一 ...

随机推荐

  1. FaceBook 发布星际争霸最大 AI 数据集

    简介 我们刚发布了最大的星际争霸:Brood War 重播数据集,有 65646 个游戏.完整的数据集经过压缩之后有 365 GB,1535 million 帧,和 496 million 操作动作. ...

  2. TensorFlow系列专题(五):BP算法原理

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/ ,学习更多的机器学习.深度学习的知识! 一.反向传播算法简介 二.前馈计算的过程 第一层隐藏层的计算 第 ...

  3. socket,实现服务器和客户端对话

    服务器: #define _CRT_SECURE_NO_WARNINGS#include<stdio.h>#include<string>#include<WinSock ...

  4. Python python对象 deque

    # deque对象 ''' class collections.deque([ iterable [,maxlen ] ] ) 返回一个从左到右(使用append())初始化的新deque对象,其中包 ...

  5. 模块 face_recognition 人脸识别

    face_recognition 人脸识别 api 说明 1 load_image_file 将img文件加载到numpy 数组中 2 face_locations 查找图像中所有面部和所有面部特征的 ...

  6. 学习 MyBatis 的一点小总结 —— 底层源码初步分析

    目录 MyBatis 如何获取数据库源? MyBatis 如何获取 sql 语句? MyBatis 如何执行 sql 语句? MyBatis 如何实现不同类型数据之间的转换? 在过去程序员使用 JDB ...

  7. Java 数组 字符 函数

    一. 1. package Hello; import java.util.Scanner; public class hello_test { public static void main(Str ...

  8. vi文本编辑器的学习

    vi文本编辑器的启动与退出 启动:快捷键Ctrl+Alt+t进入终端, 在系统提示符($或#)的提示下,输入vi <文件名称>,可以自动载入你要编辑的文件或者新建一个文件. 退出:在指令模 ...

  9. 并查集 & 最小生成树详细讲解

    并查集 & 最小生成树 并查集 Disjoint Sets 什么是并查集?     并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将 ...

  10. # H - H HDU - 2066 (多起点、多终点问题)

    H - H HDU - 2066 (多源点.多汇点问题) 一个图上,有M条边,Z个出发点,Y个终止点.求一条最短路,其中起点是Z中的任意一点,终点是Y中任意一点. Input 输入数据有多组,输入直到 ...