一、实验目的

在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单函数P(x)(常是多项式),使其在插值基点xi,处成立P(xi)= yi(i=0,1,……,n),而在[a,b]上的其它点处成立f(x)≈P(x).

二、实验原理

三、实验内容

求f(x)=x4在[0,2]上按5个等距节点确定的Hermite插值多项式.

四、实验程序

 import numpy as np
from sympy import *
import matplotlib.pyplot as plt def f(x):
return x ** 4 def ff(x): # f[x0, x1, ..., xk]
ans = 0
for i in range(len(x)):
temp = 1
for j in range(len(x)):
if i != j:
temp *= (x[i] - x[j])
ans += f(x[i]) / temp
return ans def draw(L, newlabel= 'Lagrange插值函数'):
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x = np.linspace(0, 2, 100)
y = f(x)
Ly = []
for xx in x:
Ly.append(L.subs(n, xx))
plt.plot(x, y, label='原函数')
plt.plot(x, Ly, label=newlabel)
plt.xlabel('x')
plt.ylabel('y')
plt.legend() plt.savefig('1.png')
plt.show() def lossCal(L):
x = np.linspace(0, 2, 101)
y = f(x)
Ly = []
for xx in x:
Ly.append(L.subs(n, xx))
Ly = np.array(Ly)
temp = Ly - y
temp = abs(temp)
print(temp.mean()) def calM(P, x):
Y = n ** 4
dfP = diff(P, n)
return solve(Y.subs(n, x[0]) - dfP.subs(n, x[0]), [m,])[0] if __name__ == '__main__':
x = np.array(range(11)) - 5
y = f(x) n, m = symbols('n m')
init_printing(use_unicode=True) P = f(x[0])
for i in range(len(x)):
if i != len(x) - 1:
temp = ff(x[0:i + 2])
else:
temp = m
for j in x[0:i + 1]:
temp *= (n - j)
P += temp
P = expand(P) P = P.subs(m, calM(P, x))
draw(P, newlabel='Hermite插值多项式')
lossCal(P)

五、运算结果

数值计算方法实验之Hermite 多项式插值 (Python 代码)的更多相关文章

  1. 数值计算方法实验之newton多项式插值 (Python 代码)

    一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...

  2. 数值计算方法实验之Lagrange 多项式插值 (Python 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  3. 数值计算方法实验之Newton 多项式插值(MATLAB代码)

    一.实验目的 在己知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)=yi (i=0,1,……, n)求出简单函 ...

  4. 数值计算方法实验之按照按三弯矩方程及追赶法的三次样条插值 (MATLAB 代码)

    一.实验目的 在已知f(x),x∈[a,b]的表达式,但函数值不便计算,或不知f(x),x∈[a,b]而又需要给出其在[a,b]上的值时,按插值原则f(xi)= yi(i= 0,1…….,n)求出简单 ...

  5. 拉格朗日插值Python代码实现

    1. 数学原理 对某个多项式函数有已知的k+1个点,假设任意两个不同的都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为: 其中每个lj(x)为拉格朗日基本多项式(或称插值基函数),其表 ...

  6. 数值计算方法 | C语言实现几个数值计算方法(实验报告版)

    目录 写在前面 实验一 牛顿插值方法的实现 实验二 龙贝格求积算法的实现 实验三 高斯列主元消去法的实现 实验四 最小二乘方法的实现 写在前面 使用教材:<数值计算方法>黄云清等编著 科学 ...

  7. 数值分析:Hermite多项式

    http://blog.csdn.net/pipisorry/article/details/49366047 Hermite埃尔米特多项式 在数学中,埃尔米特多项式是一种经典的正交多项式族,得名于法 ...

  8. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  9. 【剑指Offer】数值的整数次方 解题报告(Python)

    [剑指Offer]数值的整数次方 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https://www.nowcoder.com/ta/coding-interviews ...

随机推荐

  1. ICML 2019论文录取Top100:谷歌霸榜

    [导读]人工智能顶级会议ICML 2019发布了今年论文录取结果.提交的3424篇论文中,录取了774篇,录取率为22.6%,较去年有所降低.从录取论文数量来看,谷歌成为今年最大赢家,紧随其后的是MI ...

  2. Feign客户端实现RPC 调用

    1,springcloud 中支持http调用的两种方式,RestTemplate,Feign客户端 2,Feign 客户端是一个声明式(注解方式)http 远程调用工具 3,实现方式如下: 第一步: ...

  3. zookeeper java代码实现master 选举

    1,master选举使用场景及结构 现在很多时候我们的服务需要7*24小时工作,假如一台机器挂了,我们希望能有其它机器顶替它继续工作.此类问题现在多采用master-salve模式,也就是常说的主从模 ...

  4. Array.forEach原理,仿造一个类似功能

    Array.forEach原理,仿造一个类似功能 array.forEach // 设一个arr数组 let arr = [12,45,78,165,68,124]; let sum = 0; // ...

  5. AssociatedObject

    在 Objective-C 中可以通过 Category 给一个现有的类添加属性,但是却不能添加实例变量,值得庆幸的是,我们可以通过 Associated Objects 来弥补这一不足. 在阅读本文 ...

  6. .Net平台技术栈?不止于此

    首先援引一名工友几年前的文章:http://csharper.blog.51cto.com/3052247/1330022,结合当前微软技术领域及平台工具现状,文章有增改. .NET是个很大.很宽.很 ...

  7. [HDU2546]饭卡<dp 01背包>

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2546 #题目描述: 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如果购买一个商品之前, ...

  8. 2020非常全的软件测试linux常用命令全集,linux面试题及参考答案

    一.前言: 作为一名软件测试工程师,我相信大部分的人都和Linux打过交道,因为我们的服务器一般都是装的Linux操作系统,包括各种云服务器也都是用的Linux,目前主流是CentOS7,那么对于一个 ...

  9. (CSS):last-child与:last-of-type区别

    <!DOCTYPE html><html><head> <meta charset="utf-8"> <title>la ...

  10. ajax前端传递对象给后端

    前端操作如下即可: