Description

给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。现在增加一个要求,即还需要输出该子序列的第一个和最后一个元素。

Input

测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( K<= 10000 ),第2行给出K个整数,中间用空格分隔,每个数的绝对值不超过100。当K为0时,输入结束,该用例不被处理。

Output

对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

Sample Input

-  -  -

- - -

Sample Output

 - -

HINT

这是一道稍微有点难度的动态规划题。

首先可以想到的做法是枚举每个区间的和,预处理sum[i]来表示区间[1, i]的和之后通过减法我们可以O(1)时间获得区间[i, j]的和,因此这个做法的时间复杂度为O(n^2)。

然后这题的数据范围较大,因此还需作进一步优化才可以AC。记第i个元素为a[i],定义dp[i]表示以下标i结尾的区间的最大和,那么dp[i]的计算有2种选择,一种是含有a[i-1],一种是不含有a[i-1],前者的最大值为dp[i-1]+a[i],后者的最大值为a[i]。而两者取舍的区别在于dp[i-1]是否大于0。

 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>
#include <math.h>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <sstream>
const int INF=0x3f3f3f3f;
typedef long long LL;
const int mod=1e9+;
//const double PI=acos(-1);
#define Bug cout<<"---------------------"<<endl
const int maxn=1e5+;
using namespace std; int A[maxn];
int dp[maxn]; int main()
{
int n;
while(~scanf("%d",&n)&&n)
{
int ml=,mr=n,MAX=,l,r;
for(int i=;i<=n;i++)
{
scanf("%d",&A[i]);
if(A[i]>MAX)
{
MAX=A[i];
ml=mr=i;
}
}
for(int i=;i<=n;i++)
{
if(A[i]>dp[i-]+A[i])
{
l=i;
dp[i]=A[i];
}
else
{
dp[i]=dp[i-]+A[i];
if(dp[i]>MAX)
{
MAX=dp[i];
ml=l;
mr=i;
}
}
}
printf("%d %d %d\n",MAX,A[ml],A[mr]);
}
return ;
}
 

最大连续子序列(DP)的更多相关文章

  1. HDU 1231.最大连续子序列-dp+位置标记

    最大连续子序列 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  2. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  3. ACM_HDU 1231 最大连续子序列 (dp)_代码分析

    Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...

  4. 最大连续子序列乘积(DP)

    题目来源:小米手机2013年校园招聘笔试题 题目描述: 给定一个浮点数序列(可能有正数.0和负数),求出一个最大的连续子序列乘积. 输入: 输入可能包含多个测试样例.每个测试样例的第一行仅包含正整数 ...

  5. DP专题训练之HDU 1231 最大连续子序列

    Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j < ...

  6. HDU-1231 简单dp,连续子序列最大和,水

    1.HDU-1231 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=1231 3.总结:水 题意:连续子序列最大和 #include<iostre ...

  7. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  8. dp经典问题-最大连续子序列和 hdu1003

    题目描述: 这道题我先后做过三遍,结果每一遍都没有做出来.今天再仔仔细细的研究了一下,才发现用动态规划更好理解. 关于求最大连续子序列和的博文转载如下:https://www.cnblogs.com/ ...

  9. ZOJ 3872 Beauty of Array【无重复连续子序列的贡献和/规律/DP】

    Edward has an array A with N integers. He defines the beauty of an array as the summation of all dis ...

  10. DP———1.最大子连续子序列和

    最大连续子序列 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

随机推荐

  1. SPOJ - AMR11H Array Diversity (排列组合)

    题意:给定n个数,求包含最大值和最小值的子集(数字连续)和子序列(数字不连续)的个数. 分析: 1.如果n个数都相同,则子集个数为N * (N + 1) / 2,子序列个数为2N-1. 2.将序列从头 ...

  2. 微信小程序 -- 自定义抽屉式菜单(底部,从下向上拉出)

    实现一个抽屉菜单的案例 wxml <!--button--> <view class="btn" bindtap="powerDrawer" ...

  3. 【pwnable.kr】leg

    pwnable从入门到放弃第八题. Download : http://pwnable.kr/bin/leg.cDownload : http://pwnable.kr/bin/leg.asm ssh ...

  4. weex 随笔

    1.三大模块: <template>:样板,内容区 <style>:css <script>: js <script> export default{ ...

  5. [Mathematics][Fundamentals of Complex Analysis][Small Trick] The Trick on drawing the picture of sin(z), for z in Complex Plane

    Exercises 3.2 21. (a). For $\omega = sinz$, what is the image of the semi-infinite strip $S_1 = \{x+ ...

  6. OC项目加入swift第三方库遇到的坑

    https://www.jianshu.com/p/96d868dcd69c 2017.07.07 16:23* 字数 295 阅读 5218评论 2喜欢 4 首先,在OC项目的Podfile文件中添 ...

  7. (5)opencv的基础操作和矩阵的掩模操作

    不懂的,可以简单,看看这个网址:https://blog.csdn.net/xiongwen_li/article/details/78503491 图片放到了桌面,所以,图片的路径就是桌面了,剩余的 ...

  8. 不同的二叉搜索树&II

    不同的二叉搜索树 只要求个数,递推根节点分割左右子树即可 class Solution { public int numTrees(int n) { int []dp=new int[n+1]; fo ...

  9. C++ 操作数据库类

    #pragma once #include <string> #include <windows.h> #include <algorithm> #include ...

  10. MFC 打开Jpg文件

    UpdateWindow(); int height, width; CRect rect;//定义矩形类 CRect rect1; CImage image; //创建图片类 image.Load( ...