前言:即使是简单的递归,在复杂度过高时也可以使用简单的dp。

一般有两种情况,一是利用dp思想求最优子结构进行搜索剪枝,二是利用搜索进行dp数组的填充。

例题一、hdu1978

题目大意:这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下:

1.机器人一开始在棋盘的起始点并有起始点所标有的能量。

2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。

3.机器人不能在原地停留。

4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。



如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)

点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。

我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。

一开始的思路:既然已知迷宫起点终点,果断dfs。

dfs最重要的一点就是明确函数中应有的参数和结束条件

在这里,很显然终止条件是到达右下角的点,所以函数中参数要有x,y坐标。又因为在每个点有对应的能量,由能量决定下一步能走到哪里进行枚举,所以参数还应该包含当前点的能量。

#include <bits/stdc++.h>
using namespace std;
int n,m,a[109][109];
int ans;//答案
bool p(int q,int w)
{
if(q>=0&&q<n&&w>=0&&w<m)
return true;
else
return false;
}
void dfs(int power,int x,int y)
{
if(x==n-1&&y==m-1)
{
ans++;
ans%=10000;
return;
}
for(int i=0;i<=power;i++)
{
if(x+i>=n)
break;
for(int j=0;j<=power-i;j++)
{
if(y+j>=m)
break;
if(i==0&&j==0)
continue;
dfs(a[x+i][y+j],x+i,y+j);
}
}
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n>>m;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
cin>>a[i][j];
}
dfs(a[0][0],0,0);
cout<<ans;
}
}

很遗憾,完全超时。想来也是,100*100的棋盘还有能量,怎么可能跑得了,仔细一想剪枝也无从下手,因为每一步都是必须要走的。

但是,我们从终点开始看,很显然最后一行的元素只能一直向右走。那我们从最后一行m-1个元素看起,从这里出发只有一种走法,再看第m-2个元素,如果能量大于1,则可以一步走到终点,也可以先走到m-1,那走法就加上dp[n-1][m-1]。

由此一来,状态转移方程就容易得出。使用dfs从最后一行枚举每个点进行dfs,看它能到达哪些点,每到一个点就加上那个点在dp数组中的值,一步一步向前搜索。



蓝色块是起点能到达的格子,走法就是每个格子的dp数和嘛!

代码如下

#include <bits/stdc++.h>
using namespace std;
int n,m,a[209][209],dp[209][209];
int dfs(int power,int x,int y,int k)
{
int sumn=k;
if(dp[x][y]!=0)
return dp[x][y];
for(int i=0;i<=power;i++)
{
if(x+i>=n)//防止越界
break;
for(int j=0;j<=power-i;j++)
{
if(y+j>=m)//防止越界
break;
if(i==0&&j==0)//不能待在原地不懂
continue;
sumn+=dfs(a[x+i][y+j],x+i,y+j,0);
}
}
return sumn;
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n>>m;
memset(dp,0,sizeof(dp));
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
cin>>a[i][j];
}
dp[n-1][m-1]=1;dp[n-1][m]=dp[n][m-1]=1;。。初始化
for(int i=n-1;i>=0;i--)
for(int j=m-1;j>=0;j--)
dp[i][j]=dfs(a[i][j],i,j,0)%10000;//dfs就是求当前格子的走法
cout<<dp[0][0]<<endl;
}
}

搜索+简单dp的更多相关文章

  1. hdu2067 简单dp或者记忆化搜索

    题意: 小兔的棋盘 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  2. 简单dp总结

    ### 简单dp总结 本文是阅读<挑战程序设计第二版>其中关于dp章节所作总结.将简要描述dp的部分知识. 一.dp是什么? dp在计算机专业学科中全称是动态规划(dynamic prog ...

  3. HDU 1087 简单dp,求递增子序列使和最大

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  4. Codeforces Round #260 (Div. 1) A. Boredom (简单dp)

    题目链接:http://codeforces.com/problemset/problem/455/A 给你n个数,要是其中取一个大小为x的数,那x+1和x-1都不能取了,问你最后取完最大的和是多少. ...

  5. codeforces Gym 100500H A. Potion of Immortality 简单DP

    Problem H. ICPC QuestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100500/a ...

  6. 简单dp --- HDU1248寒冰王座

    题目链接 这道题也是简单dp里面的一种经典类型,递推式就是dp[i] = min(dp[i-150], dp[i-200], dp[i-350]) 代码如下: #include<iostream ...

  7. poj2385 简单DP

    J - 简单dp Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bit ...

  8. hdu1087 简单DP

    I - 简单dp 例题扩展 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     ...

  9. poj 1157 LITTLE SHOP_简单dp

    题意:给你n种花,m个盆,花盆是有顺序的,每种花只能插一个花盘i,下一种花的只能插i<j的花盘,现在给出价值,求最大价值 简单dp #include <iostream> #incl ...

随机推荐

  1. python如何操作excel 基础代码

    一 基础操作1打开excel表格并获取表格名称 wookbook = load_workbook(filename = 表格文件路径) (注意只能打开存在的表格,不能用该方法创建一个新表格文件) wo ...

  2. JAVA获取EXCEL列头

    FileInputStream fileInputStream = new FileInputStream(rootPath + path + "/" + fileName); L ...

  3. stand up meeting 11/17/2015

    今日工作总结: 冯晓云:代表组内参加了北航软工M1检查,有幸在工作展开之前先观摩别人的工作,吸取经验和教训:现在看来,当时对往届ASE学员的采访还不够深入,只说统筹分工团结合作还是有些空,具体的任务划 ...

  4. 1327C - Game with Chips (构造)

    题目大意:一个n*m的棋盘上有k个棋子,k个棋子相互关联,可以一起向上向下向左向右,当碰到边界时,如果继续移动会发生越界,那么该棋子会保持不动,其余棋子继续移动.问能否在2*n*m的移动次数内,使各个 ...

  5. A Bug's Life POJ - 2492 (种类或带权并查集)

    这个题目的写法有很多,用二分图染色也可以写,思路很好想,这里我们用关于并查集的两种写法来做. 题目大意:输入x,y表示x和y交配,然后判断是否有同性恋. 1 带权并查集: 我们可以用边的权值来表示一种 ...

  6. 纯js时钟特效详细代码分析实例教程

    电子时钟是网上常见的功能,在学习date对象和定时器功能时,来完成一个电子时钟的制作是不错的选择.学习本教程之前,读者需要具备html和css技能,同时需要有简单的javascript基础. 先准备一 ...

  7. vue2.x学习笔记(十八)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12629705.html. 处理边界情况 这里记录的都是和处理边界情况有关的功能,即一些需要对vue的规则做一些小调 ...

  8. CSS选择器与CSS的继承,层叠和特殊性

    什么是选择器?选择器{样式;},在{}之前的部分就是"选择器","选择器"指明了{}中的"样式"的作用对象,也就是"样式" ...

  9. CTO为何要微服务评估

    为什么定义参考模型 之前我的工作,大部分时间都是聚焦在某个产品/团队,为他们提供微服务/DevOps的实施及指导.进入公司后,同时参与了多个产品团队的改造研讨.其中最大的不同在于: 在面对一个团队的时 ...

  10. Golang项目部署

    文章来源:https://goframe.org/deploymen... 一.独立部署 使用GF开发的应用程序可以独立地部署到服务器上,设置为后台守护进程运行即可.这种模式常用在简单的API服务项目 ...