LGOJ1290 欧几里德的游戏
题目链接
P1290 and UVA10368 (双倍经验【虽然标签差距很有趣】)
题目大意
给定两个数\(n\)和\(m\),每次操作可以用较大数减去较小数的正整数倍,不可以减成负数。
先获得一个\(0\)的人获胜,问先手是否必胜。
\(n,m \leq 2^{31}-1\)
多组数据。
Solution
一眼博弈论题吧2333
\(SG\)函数和递归操作应该是摆在眼前的
先记较大数为\(n\),较小数为\(m\)
三种情况:
1.如果当前态的\(n\)和\(m\)中有一个已经是\(0\)了
显然\(SG(now)=0\),这个人一定输了
2.如果\(n\)已经是\(m\)的倍数
一步操作就可以获胜,\(SG(now)=1\)这个人一定赢了
(上两个都是终止态)
3.\(SG(n,m)=SG(n\space mod \space m,m)\)
这里需要理解一下:
我们假定我们要让这个式子成立
\]
通过控制\(k\)的大小进行博弈,可以使得
\]
得证(其实对于“通过控制\(k\)的大小进行博弈”感性理解一下吧,具体过程不展开了)
CODE
#include <bits/stdc++.h>
using namespace std;
#define int long long
namespace yspm {
inline int read() {
int res = 0, f = 1;
char k;
while (!isdigit(k = getchar()))
if (k == '-')
f = -1;
while (isdigit(k)) res = res * 10 + k - '0', k = getchar();
return res * f;
}
inline bool work(int n, int m) {
if (!m)
return 0;
if (n/m == 1)
return !work(m, n % m);
return 1;
}
signed main() {
int x,y;
while (1) {
x = read();
y = read();
if(x==y&&y==0) break;
if (work(max(x, y), min(x, y)))
puts("Stan wins");
else
puts("Ollie wins");
}
return 0;
}
} // namespace yspm
signed main() { return yspm::main(); }
(可以发现这段代码是在\(Libre\) \(OJ\)上格式化过的吧2333)
总结
博弈论题要考虑完整情况,对于有些子问题可以先手动博弈一下,就会迎刃而解了
LGOJ1290 欧几里德的游戏的更多相关文章
- P1290 欧几里德的游戏
P1290 欧几里德的游戏 原本不想写的,但细节有些多qwq,还是放上吧. 假设a严格大于b 当a<b*2时,只有一种方法往下走:否则就可以有多种方法,并且一定至少有一种可以使自己必胜,因为可以 ...
- P1290 【欧几里德的游戏】
P1290 [欧几里德的游戏] 真·做题全凭感性 从题目中很容易看出 这是一道\(Gcd\)的题 同时又结合了一些略略的博弈论(丢下锅跑真爽 我们看,辗转相减的\(a,b\)一共只有两种情况 \(a- ...
- 洛谷——P1290 欧几里德的游戏
P1290 欧几里德的游戏 题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的 ...
- luoguP1290 欧几里德的游戏 [博弈论]
题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...
- LUOGU P1290 欧几里德的游戏
题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...
- P1290 欧几里德的游戏(洛谷)
欧几里德的两个后代 Stan 和 Ollie 正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数 M 和 N,从 Stan 开始,从其中较大的一个数,减去较小的数的正整数倍,当然, ...
- LG1290 欧几里德的游戏
https://www.luogu.com.cn/problem/P1290 博弈论游戏,用到mod. 辗转相除法的过程,会构成n种状态. 到达最后一个状态就赢了. 对于一次过程如果div>1那 ...
- 洛谷P1290 欧几里德的游戏
题目:https://www.luogu.org/problemnew/show/P1290 只要出现n>=2*m,就可以每次把较大的数控制在较小的数的一倍与二倍之间,则控制了对方的走法: 每次 ...
- 题解 洛谷P1290 【欧几里德的游戏】
这题没必要那么麻烦,只需要推理一下即可: 假设我们有两个数\(x,y\),先把\(x\)设为较大值,\(y\)设为较小值.现在分成三种情况: \(1\).若两数为倍数关系,操作的一方赢. \(2\). ...
随机推荐
- win10编译jpeglib
jpeglib看名字都大概知道和图像格式jpg或jpeg有关了,是一个常用的图像处理软件都会依赖的开源库. 首先去官网下载jpeglib的源码,直接取这里下载:http://www.ijg.org/f ...
- delphi内嵌汇编
{ 前面知道了一个汇编的赋值指令(MOV), 再了解一个加法指令(ADD), 就可以做个例子了. 譬如: ADD AX,BX; 这相当于 Delphi 中的 AX := AX + BX; 另外提前来个 ...
- MySQL中间件介绍
360 Atlas Atlas是由 Qihoo 360, Web平台部基础架构团队开发维护的一个基于MySQL协议的数据中间层项目.它是在mysql-proxy 0.8.2版本的基础上,对其进行了优化 ...
- POJ 3321 Apple Tree 树状数组 第一题
第一次做树状数组,这个东西还是蛮神奇的,通过一个简单的C数组就可以表示出整个序列的值,并且可以用logN的复杂度进行改值与求和. 这道题目我根本不知道怎么和树状数组扯上的关系,刚开始我想直接按图来遍历 ...
- 5)添加一个tab
1)还是按照(4)的代码:2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ...
- idea创建远程分支
1.先从远程拉取一个完整的分支,master或dev 2.新建一个分支,new,新建的同时checkout 出来 3.把新建的分支push到远程 4.如果新建完分支后写代码了,需要先把代码提交然后一起 ...
- STM32F407的Modbus做为主站与从站通讯
在调试STM32F407的串口Modbus通讯之前,也使用过Modbus通讯,只不过都是在PLC或则昆仑通态的触摸屏上使用直接调用现成的库里面的模块,驱动就可以,相对于STM32来,使用PLC库里面的 ...
- Django模型基础(三)——关系表的数据操作
模型之间可以有三种表关系,即一对一,一对多和多对多.表关联之间的数据操作在Django中可以很方便的操作到.在模型中,表关联的字段类型是关联表的实例,而不是字段本身类型.关联字段在数据库中会在其后补上 ...
- Linux-常见信号介绍
1.SIGINT 2 Ctrl + C时OS送给前台进程组中每个进程 2.SIGABRT 6 调用abort函数,进程异常终止 3 ...
- ELK简单配置
input { file { path => ["/usr/local/kencery/tomcat/logs/catalina.out"] type => " ...