the least-squares criterion|Sxx|Sxy|Syy|Regression Equation|Outliers|Influential Observations|curvilinear regression|linear regression
4.2 The Regression Equation

Because we could draw many different lines through the cluster of data points, we need a method to choose the “best” line. The method, called the least-squares criterion, is based on an analysis of the errors made in using a line to fifit the data points.
存在有限个可能的的模型(可以使用之后的方法得到模型),从中取出最有可能的2个:并用最小二乘法计算error:

比如(a)中的e

最后得到:

计算
,最后确定模型为b,这只是对模型的评价,生成模型可以使用以下方法:

推导:

Suppose that a scatterplot indicates a linear relationship between two variables. Then,within the range of the observed values of the predictor variable, we can reasonably use the regression equation to make predictions for the response variable. However,to do so outside that range, which is called extrapolation,
比如减价趋势下的产品价格,离开观测值范围后,价格可能会处于负值状态,所以线性关系必须注明自变量range

In the context of regression, an outlier is a data point that lies far from the regression line
Outliers and Influential Observations
Outliers是偏离直线太远的值
influential observation : a data point whose removal causes the regression equation (and line) to change considerably
Eg.在加入(2,169)前后的直线发生了巨大变化,所以(2,169)是一个influential observation

解决办法:
1.缩小x的range
2.添加influential observation 周围的点
Nonetheless, we may need either to remove it—thus limiting the analysis to Orions between 4 and 7 years old—or to obtain additional data on 2- and 3-year-old Orions so that the regression analysis is not so dependent on one data point
outlier和influential observation实际上很难分清:An outlier may or may not be an inflfluential observation, and an inflfluential observation may or may not be an outlier. Many statistical software packages identify potential outliers and inflfluential observations.

否则会出现:

该分布实际上应该为curvilinear regression
多重线性回归:

曲线回归:

the least-squares criterion|Sxx|Sxy|Syy|Regression Equation|Outliers|Influential Observations|curvilinear regression|linear regression的更多相关文章
- Regularized Linear Regression with scikit-learn
Regularized Linear Regression with scikit-learn Earlier we covered Ordinary Least Squares regression ...
- [UFLDL] Linear Regression & Classification
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html Deep learning:六(regulariz ...
- CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance
源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In ...
- 机器学习 (一) 单变量线性回归 Linear Regression with One Variable
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- Linear regression with one variable - Model representation
摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第二章<单变量线性回归>中第6课时<模型概述>的视频原文字幕.为本人在视频学习过程中逐字逐句记录下 ...
- 机器学习---最小二乘线性回归模型的5个基本假设(Machine Learning Least Squares Linear Regression Assumptions)
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们 ...
- 机器学习---用python实现最小二乘线性回归算法并用随机梯度下降法求解 (Machine Learning Least Squares Linear Regression Application SGD)
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践 ...
- 机器学习笔记1——Linear Regression with One Variable
Linear Regression with One Variable Model Representation Recall that in *regression problems*, we ar ...
随机推荐
- Tensorflow学习教程------tensorboard网络运行和可视化
tensorboard可以将训练过程中的一些参数可视化,比如我们最关注的loss值和accuracy值,简单来说就是把这些值的变化记录在日志里,然后将日志里的这些数据可视化. 首先运行训练代码 #co ...
- adaboost 基于错误提升分类器
引自(机器学习实战) 简单概念 Adaboost是一种弱学习算法到强学习算法,这里的弱和强学习算法,指的当然都是分类器,首先我们需要简单介绍几个概念. 1:弱学习器:在二分情况下弱分类器的错误率会低于 ...
- Vue-router(5)之 路由的before家族
beforeEach方法 import Vue from 'vue' import Router from 'vue-router' import Son1 from '@/view/New/son1 ...
- Java线程——线程之间的死锁
一,什么是死锁? 所谓的死锁是指多个线程因为竞争资源而造成的一种僵局(相互等待),若无外力的作用,这些进程都不能向前推进. 二,死锁产生的条件? (1)互斥条件:线程要求对所分配的资源(如打印机)进行 ...
- jenkins忘记登录密码解决方法
第一步:修改配置文件 修改jenkins的配置文件,找到如下几行删除(删除前一定要备份) <useSecurity>true</useSecurity> <authori ...
- tensorflow笔记(北大网课实战)
1. tf.multiply(x,y1) # 对应元素相乘 tf.matmul(x,y2) # 矩阵相乘 2.会话:执行计算图中的节点运算的. with tf.Session() as sess: p ...
- Cisco连接失败问题处理
连接公司的VPN时软件一直安装不上,试了几种方法,在此总结. 原文链接:http://www.itsystemadmin.com/error-27850-unable-to-manage-networ ...
- 问:为什么java是单继承,但却是多实现的呢?
在学习的过程中,我发现了如题的这个有趣的问题. 单继承不必解释,一个类只能有一个直接父类:但是对于接口的实现,一个类却能够实现多个接口. 为什么是这种情况呢?我们来举个简单的栗子看一下: class ...
- java日志处理汇总
org.apache.commons.lang3.time.DateUtils https://blog.csdn.net/yihaoawang/article/details/50638199
- 项目常用JS方法封装--奋斗的IT青年(微信公众号)
...