四分位数与pandas中的quantile函数
四分位数与pandas中的quantile函数
1.分位数概念
统计学上的有分位数这个概念,一般用p来表示。原则上p是可以取0到1之间的任意值的。但是有一个四分位数是p分位数中较为有名的。
所谓四分位数;即把数值由小到大排列并分成四等份,处于三个分割点位置的数值就是四分位数。
为了更一般化,在计算的过程中,我们考虑p分位。当p=0.25 0.5 0.75 时,就是在计算四分位数。
- 第1四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
- 第2四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
- 第3四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
2.计算方法
1)确定p分位数的位置(有两种方法):
方法1 pos = (n+1)*p
方法2 pos = 1+(n-1)*p(pandas 中使用的是方法2)
2)计算分位数,一般有五种方法,pandas里面的quantile函数中,interpolation参数来控制(见后)
3.quantile函数
pandas库quantile函数可以很方便的帮助我们进行分位数的计算。
DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation=’linear’)
常用参数:
q : 数字或者是类列表,范围只能在0-1之间,默认是0.5,即中位数-第2四分位数
axis :计算方向,可以是 {0, 1, ‘index’, ‘columns’}中之一,默认为 0
interpolation(插值方法):可以是 {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}之一,默认是linear。
这五个插值方法是这样的:当选中的分为点位于两个数数据点 i and j 之间时:
- linear: i + (j - i) * fraction, fraction由计算得到的pos的小数部分(后面有例子);
- lower: i.
- higher: j.
- nearest: i or j whichever is nearest.
- midpoint: (i + j) / 2.
举例
import pandas as pd
df=pd.read_csv('data/练习.csv')
df.sort_values("Height")
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
| ID | Height | |
|---|---|---|
| 0 | 1101 | 2 |
| 3 | 1201 | 4 |
| 2 | 1103 | 5 |
| 1 | 1102 | 7 |
| 4 | 1203 | 8 |
| 5 | 1205 | 12 |
参数q默认为0.5(中位数)
df['Height'].quantile()
6.0
参数interpolation的不同方法
df['Height'].quantile(q=0.5,interpolation="linear")
6.0
df['Height'].quantile(q=0.5,interpolation="lower")
5
df['Height'].quantile(q=0.5,interpolation="higher")
7
df['Height'].quantile(q=0.5,interpolation="midpoint")
6.0
df['Height'].quantile(q=0.5,interpolation="nearest")
5
说明:df['Height']中一共有6个数据,中位数的位置pos=1+(6-1)*0.5=3.5,这个位置介于5和7之间,则i=5,j=7,fraction=0.5
- linear:i + (j - i) * fraction=5+(7-5)*0.5=6
- lower:i=5
- higher:j=7
- midpoint:(i+j)/2=(5+7)/2=6
- nearest:5更接近(这个没太搞懂,貌似是fraction更靠近的那个整数)
参数q为列表类型,计算四分位数
df['Height'].quantile([0.25,0.5,0.75])
0.25 4.25
0.50 6.00
0.75 7.75
Name: Height, dtype: float64
四分位数与pandas中的quantile函数的更多相关文章
- 分位函数(四分位数)概念与pandas中的quantile函数
p分位函数(四分位数)概念与pandas中的quantile函数 函数原型 DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpola ...
- pandas中的quantile函数
https://blog.csdn.net/weixin_38617311/article/details/87893168 data.price.quantile([0.25,0.5,0.75]) ...
- 使用pandas中的raad_html函数爬取TOP500超级计算机表格数据并保存到csv文件和mysql数据库中
参考链接:https://www.makcyun.top/web_scraping_withpython2.html #!/usr/bin/env python # -*- coding: utf-8 ...
- Python学习教程:Pandas中第二好用的函数
从网上看到一篇好的文章是关于如何学习python数据分析的迫不及待想要分享给大家,大家也可以点链接看原博客.希望对大家的学习有帮助. 本次的Python学习教程是关于Python数据分析实战基础相关内 ...
- pandas 之 groupby 聚合函数
import numpy as np import pandas as pd 聚合函数 Aggregations refer to any data transformation that produ ...
- pandas中的分组技术
目录 1 分组操作 1.1 按照列进行分组 1.2 按照字典进行分组 1.3 根据函数进行分组 1.4 按照list组合 1.5 按照索引级别进行分组 2 分组运算 2.1 agg 2 ...
- 数据分析面试题之Pandas中的groupby
昨天晚上,笔者有幸参加了一场面试,有一个环节就是现场编程!题目如下: 示例数据如下,求每名学生(ID)对应的成绩(score)最高的那门科目(class)与ID,用Python实现: 这个题目 ...
- pandas中的空值处理
1.空值 1.1 有两种丢失数据: None: Python自带的数据类型 不能参与到任何计算中 np.nan: float类型 能参与计算,但结果总是nan # None+2 # 报错 # np.n ...
- Python之Pandas中Series、DataFrame
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
随机推荐
- oracle 11g 用户名和密码默认区分大小写
oracle 11g 用户名和密码默认区分大小写,可更改alter system set sec_case_sensitive_logon=false 设置改为不区分大小写.
- MySQL知识-redis实例
规划.搭建过程:6个redis实例,一般会放到3台硬件服务器注:在企业规划中,一个分片的两个分到不同的物理机,防止硬件主机宕机造成的整个分片数据丢失.端口号:7000-7005 # 1. 安装集群插件 ...
- 彻底理解JavaScript ES6中的import和export
0.前言 前端工程,在最早的时候是没有模块的概念的.随着前端工程的发展,前端开发也越来越规范化,更像是软件工程了.那么随之而来的,为了解决工程化的问题,就引入了模块的概念.但是在早期,因为ecmasc ...
- Linux passwd 提权
利用条件,passwd 可写 ls -al /etc/passwd 利用方式: 生成密钥 openssl passwd -1 -salt test 123456 写入passwd echo 'tes ...
- 关于ubuntu下使用l2tpvpn和远程桌面windows系统的测试
一.背景: 2019年9月下旬到10月上旬,到海南澄迈福山度假.随身带的笔记本电脑中windows10系统因硬盘故障挂了,在另一块硬盘上的ubuntu18.04系统正常.因媳妇需要在10月1日远程回公 ...
- Alpha冲刺 —— 5.3
这个作业属于哪个课程 软件工程 这个作业要求在哪里 团队作业第五次--Alpha冲刺 这个作业的目标 Alpha冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.会议内容 1.展 ...
- jchdl - GSL实例:FullAdder(使用HalfAdder实现)
https://mp.weixin.qq.com/s/5mcYAllizuxyr3QSNrotrw 全加器是能够计算低位进位的二进制加法电路.与半加器相比,全加器不只考虑本位计算结果是否有进位,也考虑 ...
- api.versioning 版本控制 自动识别最高版本
Microsoft.AspNetCore.Mvc.Versioning //引入程序集 .net core 下面api的版本控制作用不需要多说,可以查阅https://www.cnblogs.com/ ...
- Java实现 LeetCode 498 对角线遍历
498. 对角线遍历 给定一个含有 M x N 个元素的矩阵(M 行,N 列),请以对角线遍历的顺序返回这个矩阵中的所有元素,对角线遍历如下图所示. 示例: 输入: [ [ 1, 2, 3 ], [ ...
- Java实现 LeetCode 310 最小高度树
310. 最小高度树 对于一个具有树特征的无向图,我们可选择任何一个节点作为根.图因此可以成为树,在所有可能的树中,具有最小高度的树被称为最小高度树.给出这样的一个图,写出一个函数找到所有的最小高度树 ...