MKL库性能对比
英特尔数学核心函数库(Intel Math Kernel Library,MKL)是一套经过高度优化和广泛线程化的数学例程,专为需要极致性能的科学、工程及金融等领域的应用而设计。核心数学函数包括BLAS、LAPACK、ScaLAPACK1、稀疏矩阵解算器、快速傅立叶转换、矢量数学及其它函数。其可以为英特尔处理器提供性能优化,并且更出色地与 Microsoft Visual Studio相集成。Intel MKL是一套经过高度优化和线程化的函数库,并提供了C和Fortran接口。
使用矩阵乘法(cblas_cgemm)为例来对比不同环境与配置的性能差距。
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h" // 调用mkl头文件
#define min(x,y) (((x) < (y)) ? (x) : (y))
double* A, * B, * C; //声明三个矩阵变量,并分配内存
int m, n, k, i, j; //声明矩阵的维度,其中
double alpha, beta;
m = 2000, k = 200, n = 1000;
alpha = 1.0; beta = 0.0;
A = (double*)mkl_malloc(m * k * sizeof(double), 64); //按照矩阵维度分配内存
B = (double*)mkl_malloc(k * n * sizeof(double), 64); //mkl_malloc用法与malloc相似,64表示64位
C = (double*)mkl_malloc(m * n * sizeof(double), 64);
if (A == NULL || B == NULL || C == NULL) { //判空
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 1;
}
for (i = 0; i < (m * k); i++) { //赋值
A[i] = (double)(i + 1);
}
for (i = 0; i < (k * n); i++) {
B[i] = (double)(-i - 1);
}
for (i = 0; i < (m * n); i++) {
C[i] = 0.0;
}
先定义出待乘矩阵\(A\)和\(B\),拟执行\(C=A*B\)。其中\(C\)矩阵为全0,\(A\)和\(B\)矩阵设置为:
A = \left[ {\begin{array}{*{20}{c}}
{1.0}&{2.0}& \cdots &{1000.0}\\
{1001.0}&{1002.0}& \cdots &{2000.0}\\
\vdots & \vdots & \ddots & \cdots \\
{999001.0}&{999002.0}& \cdots &{1000000.0}
\end{array}} \right] ~~~~~
B = \left[ {\begin{array}{*{20}{c}}
{-1.0}&{-2.0}& \cdots &{-1000.0}\\
{-1001.0}&{-1002.0}& \cdots &{-2000.0}\\
\vdots & \vdots & \ddots & \cdots \\
{-999001.0}&{-999002.0}& \cdots &{-1000000.0}
\end{array}} \right]
\end{array}
\]
1 对比普通CPU与MKL库性能差距
1.1 使用dgemm(Sequential 串行)
printf (" Making the first run of matrix product using Intel(R) MKL dgemm function \n"
" via CBLAS interface to get stable run time measurements \n\n");
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, p, alpha, A, p, B, n, beta, C, n);
printf (" Measuring performance of matrix product using Intel(R) MKL dgemm function \n"
" via CBLAS interface \n\n");
s_initial = dsecnd();
for (r = 0; r < LOOP_COUNT; r++) {
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, p, alpha, A, p, B, n, beta, C, n);
}
s_elapsed = (dsecnd() - s_initial) / LOOP_COUNT;
printf (" == Matrix multiplication using Intel(R) MKL dgemm completed == \n"
" == at %.5f milliseconds == \n\n", (s_elapsed * 1000));
输出为:
1.2 使用嵌套循环(C)计算矩阵乘法
printf(" Measuring performance of matrix product using triple nested loop \n\n");
s_initial = dsecnd();
for (r = 0; r < LOOP_COUNT; r++) {
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
sum = 0.0;
for (k = 0; k < p; k++)
sum += A[p * i + k] * B[n * k + j];
C[n * i + j] = sum;
}
}
}
s_elapsed = (dsecnd() - s_initial) / LOOP_COUNT;
printf(" == Matrix multiplication using triple nested loop completed == \n"
" == at %.5f milliseconds == \n\n", (s_elapsed * 1000));
输出为:
2 对比串、并行与多线程差距
2.1 并行模式(Parallel)
2.2 多线程并行
默认情况下,英特尔 MKL 使用 \(n\)个线程,其中 \(n\) 是系统上的物理内核数。 通过限制线程数量、观察 dgemm 的性能变化,以下示例展示了线程如何影响性能。
max_threads = mkl_get_max_threads();
printf (" Finding max number %d of threads Intel(R) MKL can use for parallel runs \n\n", max_threads);
printf (" Running Intel(R) MKL from 1 to %i threads \n\n", max_threads*2);
for (i = 1; i <= max_threads*2; i++) {
for (j = 0; j < (m*n); j++)
C[j] = 0.0;
mkl_set_num_threads(i);
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, p, alpha, A, p, B, n, beta, C, n);
s_initial = dsecnd();
for (r = 0; r < LOOP_COUNT; r++) {
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, p, alpha, A, p, B, n, beta, C, n);
}
s_elapsed = (dsecnd() - s_initial) / LOOP_COUNT;
printf (" == Matrix multiplication using Intel(R) MKL dgemm completed ==\n"
" == at %.5f milliseconds using %d thread(s) ==\n\n", (s_elapsed * 1000), i);
}
输出为:
完整代码
(I) dgemm_with_timing.c
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"
#define LOOP_COUNT 10
int main()
{
double *A, *B, *C;
int m, n, p, i, r;
double alpha, beta;
double s_initial, s_elapsed;
printf ("\n This example measures performance of Intel(R) MKL function dgemm \n"
" computing real matrix C=alpha*A*B+beta*C, where A, B, and C \n"
" are matrices and alpha and beta are double precision scalars\n\n");
m = 2000, p = 200, n = 1000;
printf (" Initializing data for matrix multiplication C=A*B for matrix \n"
" A(%ix%i) and matrix B(%ix%i)\n\n", m, p, p, n);
alpha = 1.0; beta = 0.0;
printf (" Allocating memory for matrices aligned on 64-byte boundary for better \n"
" performance \n\n");
A = (double *)mkl_malloc( m*p*sizeof( double ), 64 );
B = (double *)mkl_malloc( p*n*sizeof( double ), 64 );
C = (double *)mkl_malloc( m*n*sizeof( double ), 64 );
if (A == NULL || B == NULL || C == NULL) {
printf( "\n ERROR: Can't allocate memory for matrices. Aborting... \n\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 1;
}
printf (" Intializing matrix data \n\n");
for (i = 0; i < (m*p); i++) {
A[i] = (double)(i+1);
}
for (i = 0; i < (p*n); i++) {
B[i] = (double)(-i-1);
}
for (i = 0; i < (m*n); i++) {
C[i] = 0.0;
}
printf (" Making the first run of matrix product using Intel(R) MKL dgemm function \n"
" via CBLAS interface to get stable run time measurements \n\n");
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, p, alpha, A, p, B, n, beta, C, n);
printf (" Measuring performance of matrix product using Intel(R) MKL dgemm function \n"
" via CBLAS interface \n\n");
s_initial = dsecnd();
for (r = 0; r < LOOP_COUNT; r++) {
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, p, alpha, A, p, B, n, beta, C, n);
}
s_elapsed = (dsecnd() - s_initial) / LOOP_COUNT;
printf (" == Matrix multiplication using Intel(R) MKL dgemm completed == \n"
" == at %.5f milliseconds == \n\n", (s_elapsed * 1000));
printf (" Deallocating memory \n\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
printf (" Example completed. \n\n");
return 0;
}
(II) matrix_multiplication.c
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"
#define min(x,y) (((x) < (y)) ? (x) : (y))
#define LOOP_COUNT 10
int main()
{
double* A, * B, * C;
int m, n, p, i, j, k, r;
double alpha, beta;
double sum;
double s_initial, s_elapsed;
printf("\n This example measures performance of rcomputing the real matrix product \n"
" C=alpha*A*B+beta*C using a triple nested loop, where A, B, and C are \n"
" matrices and alpha and beta are double precision scalars \n\n");
m = 2000, p = 200, n = 1000;
printf(" Initializing data for matrix multiplication C=A*B for matrix \n"
" A(%ix%i) and matrix B(%ix%i)\n\n", m, p, p, n);
alpha = 1.0; beta = 0.0;
printf(" Allocating memory for matrices aligned on 64-byte boundary for better \n"
" performance \n\n");
A = (double*)mkl_malloc(m * p * sizeof(double), 64);
B = (double*)mkl_malloc(p * n * sizeof(double), 64);
C = (double*)mkl_malloc(m * n * sizeof(double), 64);
if (A == NULL || B == NULL || C == NULL) {
printf("\n ERROR: Can't allocate memory for matrices. Aborting... \n\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 1;
}
printf(" Intializing matrix data \n\n");
for (i = 0; i < (m * p); i++) {
A[i] = (double)(i + 1);
}
for (i = 0; i < (p * n); i++) {
B[i] = (double)(-i - 1);
}
for (i = 0; i < (m * n); i++) {
C[i] = 0.0;
}
printf(" Making the first run of matrix product using triple nested loop\n"
" to get stable run time measurements \n\n");
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
sum = 0.0;
for (k = 0; k < p; k++)
sum += A[p * i + k] * B[n * k + j];
C[n * i + j] = sum;
}
}
printf(" Measuring performance of matrix product using triple nested loop \n\n");
s_initial = dsecnd();
for (r = 0; r < LOOP_COUNT; r++) {
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
sum = 0.0;
for (k = 0; k < p; k++)
sum += A[p * i + k] * B[n * k + j];
C[n * i + j] = sum;
}
}
}
s_elapsed = (dsecnd() - s_initial) / LOOP_COUNT;
printf(" == Matrix multiplication using triple nested loop completed == \n"
" == at %.5f milliseconds == \n\n", (s_elapsed * 1000));
printf(" Deallocating memory \n\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
printf(" Example completed. \n\n");
return 0;
}
(III) dgemm_threading_effect_example.c
#include <stdio.h>
#include <stdlib.h>
#include "mkl.h"
#define LOOP_COUNT 10
int main()
{
double *A, *B, *C;
int m, n, p, i, j, r, max_threads;
double alpha, beta;
double s_initial, s_elapsed;
printf ("\n This example demonstrates threading impact on computing real matrix product \n"
" C=alpha*A*B+beta*C using Intel(R) MKL function dgemm, where A, B, and C are \n"
" matrices and alpha and beta are double precision scalars \n\n");
m = 2000, p = 200, n = 1000;
printf (" Initializing data for matrix multiplication C=A*B for matrix \n"
" A(%ix%i) and matrix B(%ix%i)\n\n", m, p, p, n);
alpha = 1.0; beta = 0.0;
printf (" Allocating memory for matrices aligned on 64-byte boundary for better \n"
" performance \n\n");
A = (double *)mkl_malloc( m*p*sizeof( double ), 64 );
B = (double *)mkl_malloc( p*n*sizeof( double ), 64 );
C = (double *)mkl_malloc( m*n*sizeof( double ), 64 );
if (A == NULL || B == NULL || C == NULL) {
printf( "\n ERROR: Can't allocate memory for matrices. Aborting... \n\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
return 1;
}
printf (" Intializing matrix data \n\n");
for (i = 0; i < (m*p); i++) {
A[i] = (double)(i+1);
}
for (i = 0; i < (p*n); i++) {
B[i] = (double)(-i-1);
}
for (i = 0; i < (m*n); i++) {
C[i] = 0.0;
}
max_threads = mkl_get_max_threads();
printf (" Finding max number %d of threads Intel(R) MKL can use for parallel runs \n\n", max_threads);
printf (" Running Intel(R) MKL from 1 to %i threads \n\n", max_threads*2);
for (i = 1; i <= max_threads*2; i++) {
for (j = 0; j < (m*n); j++)
C[j] = 0.0;
mkl_set_num_threads(i);
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, p, alpha, A, p, B, n, beta, C, n);
s_initial = dsecnd();
for (r = 0; r < LOOP_COUNT; r++) {
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m, n, p, alpha, A, p, B, n, beta, C, n);
}
s_elapsed = (dsecnd() - s_initial) / LOOP_COUNT;
printf (" == Matrix multiplication using Intel(R) MKL dgemm completed ==\n"
" == at %.5f milliseconds using %d thread(s) ==\n\n", (s_elapsed * 1000), i);
}
printf (" Deallocating memory \n\n");
mkl_free(A);
mkl_free(B);
mkl_free(C);
printf (" Example completed. \n\n");
return 0;
}
MKL库性能对比的更多相关文章
- 音频处理库性能对比:计算mel频谱的速度哪个更快?
介绍 音频信号处理在各种应用中都发挥着重要的作用,如语音识别.音乐信息检索.语音合成等.其中,Mel频谱是一种常用的频域特征表示方法,用于描述人类听觉系统对频率的敏感程度. 在深度学习音频领域,mel ...
- Java常用Json库性能对比
Java对于处理JSON数据的序列化与反序列化目前常用的类库有Gson.FastJSON.Jackson.jettison以及json-lib.在这里我们将对这些类库在json序列化与反序列化方面的性 ...
- C正则库做DNS域名验证时的性能对比
C正则库做DNS域名验证时的性能对比 本文对C的正则库regex和pcre在做域名验证的场景下做评测. 验证DNS域名的正则表达式为: "^[0-9a-zA-Z_-]+(\\.[0-9a ...
- java中常见的json解析方法、库以及性能对比
常见的json解析有原生的JSONObject和JSONArray方法,谷歌的GSON库,阿里的fastjson,还有jackson,json-lib. Gson(项目地址:https://githu ...
- ArrayList和LinkedList的几种循环遍历方式及性能对比分析
最新最准确内容建议直接访问原文:ArrayList和LinkedList的几种循环遍历方式及性能对比分析 主要介绍ArrayList和LinkedList这两种list的五种循环遍历方式,各种方式的性 ...
- lua、groovy嵌入到java中的性能对比(转)
lua和groovy都是可以嵌入到java中的脚本语言.lua以高性能著称,与C/C++在游戏开放中有较多使用,groovy是一个基于Java虚拟机(JVM)的敏捷动态语言,在jvm下有着不错的性能. ...
- [转]Numpy使用MKL库提升计算性能
from:http://unifius.wordpress.com.cn/archives/5 系统:Gentoo Linux (64bit, Kernel 3.7.1)配置:Intel(R) Cor ...
- Java几种常用JSON库性能比较
本篇通过JMH来测试一下Java中几种常见的JSON解析库的性能. 每次都在网上看到别人说什么某某库性能是如何如何的好,碾压其他的库.但是百闻不如一见,只有自己亲手测试过的才是最值得相信的. JSON ...
- Struts2、SpringMVC、Servlet(Jsp)性能对比 测试
Struts2.SpringMVC.Servlet(Jsp)性能对比 测试 . Servlet的性能应该是最好的,可以做为参考基准,其它测试都要向它看齐,参照它. 做为一个程序员,对于各个框架的性能要 ...
- Python 读取图像文件的性能对比
Python 读取图像文件的性能对比 使用 Python 读取一个保存在本地硬盘上的视频文件,视频文件的编码方式是使用的原始的 RGBA 格式写入的,即无压缩的原始视频文件.最开始直接使用 Pytho ...
随机推荐
- 【Ubuntu】在Ubuntu上安装微信
[Ubuntu]在Ubuntu上安装微信 零.说明 微信官网最近发布了Linux的测试版本,实际使用下来与Windows版本相差不多,本文介绍如何在Ubuntu(Debian系)上安装Linux版本的 ...
- 关于TFDMemtable的使用场景【2】处理SOAP/REST取得的数据
如果可以直接获得JSON数据,那么可以直接连到TFDMemtable进行显示和编辑. 1.一组REST组件.RESTClient的属性BaseURL是http地址. 2.点击TRESTRequest右 ...
- 第五届新型功能材料国际会议(ICNFM 2025)
第五届新型功能材料国际会议(ICNFM 2025) 2025年5月16日-17日 曼谷,泰国 http://www.icnfm.net/ 会议简介 第五届新型功能材料国际会议(ICNFM 2025)将 ...
- STM32 DMA中的DMA_BufferSize和DMA_MemoryDataSize
示例代码1 采集2通道ADC数据 查看代码 extern uint16_t ADC3ConvertedValue[2]; /* DMA2 Stream0 channel2 配置 *********** ...
- Python科学计算系列4—函数和数列极限
1.数列极限 例1:求下列数列的极限 代码如下: from sympy import * n, k = symbols('n k') f1 = limit(n / (factorial(n) ** ( ...
- rabbitmq学习与总结
一.rabbitmq的使用场景 1.高并发的流量削峰 举个例子,假设某订单系统每秒最多能处理一万次订单,也就是最多承受的10000qps,这个处理能力应付正常时段的下单时绰绰有余,正常时段我们下单一秒 ...
- 🎀Docker下Dubbo服务优雅上下线实现
简介 在Docker容器环境中部署基于Dubbo的服务时,实现服务的优雅上下线是至关重要的.这通常涉及到两个关键步骤:首先,确保服务能够从注册中心摘除,停止接受新的请求:其次,等待所有正在处理的请求完 ...
- VMware平台的Ubuntu部署完全分布式Hadoop环境
前言: 此文章是本人初次部署Hadoop的过程记录以及所遇到的问题解决,这篇文章只有实际操作部分,没有理论部分.因本人水平有限,本文难免存在不足的地方,如果您有建议,欢迎留言或私信告知于我,非常感谢. ...
- get time等时间指令的用法
如图,活动时间是选择的方式选取,虽然可以通过定位年月日时来实现选择,这务必带来很多脚本内容.这里用另外的方法实现 1.使用"get time"指令获得当前系统时间 ${1} = 2 ...
- 即时通信SSE和WebSocket对比
Server-Sent Events (SSE) 和 WebSocket 都是用于实现服务器与客户端实时通信的技术,但它们在设计目标.协议特性和适用场景上有显著区别.以下是两者的详细对比: 一.核心区 ...