<题目链接>

题目大意:

给你一些模数和余数,让你求出满足这些要求的最小的数的值。

解题分析:

中国剩余定理(模数不一定互质)模板题

#include<stdio.h>
using namespace std;
#define ll long long ll A[],B[];//B[i]为余数
ll dg,ans;//dg为A[i]的最小公倍数 ans 为最小解
void exgcd(ll a, ll b, ll &d, ll&x, ll &y)
{
if (!b) {d=a; x=; y=;}
else
{
exgcd(b, a%b, d, y, x);
y-=x*(a/b);
}
}
ll gcd(ll a, ll b)
{
if (!b) return a;
else gcd(b, a%b);
} ll china(ll n)
{
ll a,b,d,x,y,dm;
ll c,c1,c2;
a=A[]; c1=B[];
for (int i=; i<n; i++)
{
b=A[i]; c2=B[i];
exgcd(a, b, d, x, y);
dm=b/d;
c=c2-c1;
if (c%d) return -;
x=((x*c/d)%dm+dm)%dm;//x可能为负
c1=a*x+c1;
a=a*b/d;
} //求最小公倍数
dg=a;//dg是最大公约数
if (!c1)//考虑c1为0的情况
{
c1=;
for (int i=; i<n; i++)
{
c1=c1*A[i]/gcd(c1, A[i]);
}
dg=c1;//此时dg为最小公倍数
}
return c1;//c1为最小的X
} int main(){
int t;
scanf("%d",&t);
int ncase=;
while(t--){
int m;
scanf("%d",&m); for(int i=;i<m;i++)
scanf("%lld",&A[i]);
for(int i=;i<m;i++)
scanf("%lld",&B[i]);
ans=china(m); //利用模板找到满足条件的最小值
printf("Case %d: %lld\n",++ncase,ans);
}
return ;
}

2018-08-20

hdu 3579 Hello Kiki【中国剩余定理】(模数不要求互素)(模板题)的更多相关文章

  1. HDU 3579 Hello Kiki 中国剩余定理(合并方程

    题意: 给定方程 res % 14 = 5 res % 57 = 56 求res 中国剩余定理裸题 #include<stdio.h> #include<string.h> # ...

  2. hdu 3579 Hello Kiki (中国剩余定理)

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. 中国剩余定理模数不互质的情况(poj 2891

    中国剩余定理模数不互质的情况主要有一个ax+by==k*gcd(a,b),注意一下倍数情况和最小 https://vjudge.net/problem/POJ-2891 #include <io ...

  4. HDU 5768 Lucky7 容斥原理+中国剩余定理(互质)

    分析: 因为满足任意一组pi和ai,即可使一个“幸运数”被“污染”,我们可以想到通过容斥来处理这个问题.当我们选定了一系列pi和ai后,题意转化为求[x,y]中被7整除余0,且被这一系列pi除余ai的 ...

  5. HDU 5768 Lucky7 (中国剩余定理 + 容斥 + 快速乘法)

    Lucky7 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 Description When ?? was born, seven crow ...

  6. hdu X问题 (中国剩余定理不互质)

    http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory ...

  7. hdu 5446 Unknown Treasure 中国剩余定理+lucas

    题目链接 求C(n, m)%p的值, n, m<=1e18, p = p1*p2*...pk. pi是质数. 先求出C(n, m)%pi的值, 然后这就是一个同余的式子. 用中国剩余定理求解. ...

  8. hdu 3579 Hello Kiki

    不互质的中国剩余定理…… 链接http://acm.hdu.edu.cn/showproblem.php?pid=3579 #include<iostream>#include<st ...

  9. hdu 3579 Hello Kiki 不互质的中国剩余定理

    Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

随机推荐

  1. 分享一款Markdown的css样式

    使用 本样式在这个样式的基础上做了一些修改, 主要是对于表格和代码块以及一些细节的修改. 主要目的是用在chrome的扩展 Markdown Preview Plus中, 替换其内置的样式. 由于 M ...

  2. SQL Server 备份还原

    SQL Server支持三种备份方式 完全备份: 差异备份 事务日志备份 一般备份方式为,完全备份/每周,差异备份/每天,事务日志备份/按分钟计,这样可确保备份的高效性和可恢复性. 1. 完全备份 备 ...

  3. SpringBoot2.x配置文件讲解

    SpringBoot2.x配置文件讲解 简介:SpringBoot2.x常见的配置文件 xml.yml.properties的区别和使用 xml.properties.json.yaml 1.常见的配 ...

  4. spring整合ehcache2.5.2缓存异常-- net.sf.ehcache.CacheException

    报错如下: The source of the existing CacheManager is: DefaultConfigurationSource [ ehcache.xml or ehcach ...

  5. js代码解析原则

    js引擎在读取js代码时会进行两个步骤,第一个步骤是解释,第二个步骤是执行. 解释就是先通篇扫描所有的Js代码,然后把所有声明提升到顶端,第二步是执行,执行就是执行代码的操作. 例: 例子1: < ...

  6. 配置使用OpenCV静态链接库

    配置opencv静态链接库需要用到:staticlib 在配置链接器->附加库目录时应该为staticlib的路径.同理若是利用动态链接库则只需要lib的路径: 动态链接库则使用lib,然而在使 ...

  7. ReLu、LeakyRelu、PReLu(转载)

    转载链接:http://blog.csdn.net/cham_3/article/details/56049205

  8. linux内核驱动中对字符串的操作【转】

    转自:http://www.360doc.com/content/12/1224/10/3478092_255969530.shtml Linux内核中关于字符串的相关操作,首先包含头文件: #inc ...

  9. windows下升级node&npm

    一.升级npm npm install -g npm 二.升级node 1.查询node的安装目录 where node 2.在官网下载最新的安装包,直接覆盖安装即可. https://nodejs. ...

  10. raindi python魔法函数(一)之__repr__与__str__

    __repr__和__str__都是python中的特殊方法,都是用来输出实例对象的,如果没有定义这两个方法在打印的时候只会输出实例所在的内存地址 这种方式的输出没有可读性,并不能直观的体现实例.py ...