一心想学习算法,很少去真正静下心来去研究,前几天趁着周末去了解了最短路径的资料,用python写了一个最短路径算法。算法是基于带权无向图去寻找两个点之间的最短路径,数据存储用邻接矩阵记录。首先画出一幅无向图如下,标出各个节点之间的权值。

其中对应索引:

A ——> 0

B ——> 1

C ——> 2

D ——>3

E ——> 4

F ——> 5

G ——> 6

邻接矩阵表示无向图:

算法思想是通过Dijkstra算法结合自身想法实现的。大致思路是:从起始点开始,搜索周围的路径,记录每个点到起始点的权值存到已标记权值节点字典A,将起始点存入已遍历列表B,然后再遍历已标记权值节点字典A,搜索节点周围的路径,如果周围节点存在于表B,比较累加权值,新权值小于已有权值则更新权值和来源节点,否则什么都不做;如果不存在与表B,则添加节点和权值和来源节点到表A,直到搜索到终点则结束。

这时最短路径存在于表A中,得到终点的权值和来源路径,向上递推到起始点,即可得到最短路径,下面是代码:

# -*-coding:utf-8 -*-
class DijkstraExtendPath():
def __init__(self, node_map):
self.node_map = node_map
self.node_length = len(node_map)
self.used_node_list = []
self.collected_node_dict = {}
def __call__(self, from_node, to_node):
self.from_node = from_node
self.to_node = to_node
self._init_dijkstra()
return self._format_path()
def _init_dijkstra(self):
self.used_node_list.append(self.from_node)
self.collected_node_dict[self.from_node] = [0, -1]
for index1, node1 in enumerate(self.node_map[self.from_node]):
if node1:
self.collected_node_dict[index1] = [node1, self.from_node]
self._foreach_dijkstra()
def _foreach_dijkstra(self):
if len(self.used_node_list) == self.node_length - 1:
return
for key, val in self.collected_node_dict.items(): # 遍历已有权值节点
if key not in self.used_node_list and key != to_node:
self.used_node_list.append(key)
else:
continue
for index1, node1 in enumerate(self.node_map[key]): # 对节点进行遍历
# 如果节点在权值节点中并且权值大于新权值
if node1 and index1 in self.collected_node_dict and self.collected_node_dict[index1][0] > node1 + val[0]:
self.collected_node_dict[index1][0] = node1 + val[0] # 更新权值
self.collected_node_dict[index1][1] = key
elif node1 and index1 not in self.collected_node_dict:
self.collected_node_dict[index1] = [node1 + val[0], key]
self._foreach_dijkstra()
def _format_path(self):
node_list = []
temp_node = self.to_node
node_list.append((temp_node, self.collected_node_dict[temp_node][0]))
while self.collected_node_dict[temp_node][1] != -1:
temp_node = self.collected_node_dict[temp_node][1]
node_list.append((temp_node, self.collected_node_dict[temp_node][0]))
node_list.reverse()
return node_list
def set_node_map(node_map, node, node_list):
for x, y, val in node_list:
node_map[node.index(x)][node.index(y)] = node_map[node.index(y)][node.index(x)] = val
if __name__ == "__main__":
node = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
node_list = [('A', 'F', 9), ('A', 'B', 10), ('A', 'G', 15), ('B', 'F', 2),
('G', 'F', 3), ('G', 'E', 12), ('G', 'C', 10), ('C', 'E', 1),
('E', 'D', 7)]
node_map = [[0 for val in xrange(len(node))] for val in xrange(len(node))]
set_node_map(node_map, node, node_list)
# A -->; D
from_node = node.index('A')
to_node = node.index('D')
dijkstrapath = DijkstraPath(node_map)
path = dijkstrapath(from_node, to_node)
print path

运行结果:

Python实现无向图最短路径的更多相关文章

  1. [Vijos 2024]无向图最短路径

    Description 无向图最短路径问题,是图论中最经典也是最基础的问题之一.本题我们考虑一个有 $n$ 个结点的无向图 $G$.$G$ 是简单完全图,也就是说 $G$ 中没有自环,也没有重边,但任 ...

  2. Java A*算法搜索无向图最短路径

    网上看了很多别人写的A*算法,都是针对栅格数据进行处理,每次向外扩展都是直接八方向或者四方向,这样利于理解.每次移动当前点,gCost也可以直接设置成横向10斜向14. 但是当我想处理一个连续的数据集 ...

  3. Python 图_系列之基于<链接表>实现无向图最短路径搜索

    图的常用存储方式有 2 种: 邻接炬阵 链接表 邻接炬阵的优点和缺点都很明显.优点是简单.易理解,对于大部分图结构而言,都是稀疏的,使用炬阵存储空间浪费就较大. 链接表的存储相比较邻接炬阵,使用起来更 ...

  4. 四大算法解决最短路径问题(Dijkstra+Bellman-ford+SPFA+Floyd)

    什么是最短路径问题? 简单来讲,就是用于计算一个节点到其他所有节点的最短路径. 单源最短路算法:已知起点,求到达其他点的最短路径. 常用算法:Dijkstra算法.Bellman-ford算法.SPF ...

  5. 数据结构与算法系列研究七——图、prim算法、dijkstra算法

    图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph ...

  6. 《算法》第四章部分程序 part 16

    ▶ 书中第四章部分程序,包括在加上自己补充的代码,Dijkstra 算法求有向 / 无向图最短路径,以及所有顶点对之间的最短路径 ● Dijkstra 算法求有向图最短路径 package packa ...

  7. Python绘制拓扑图(无向图)、有向图、多重图。最短路径计算

    前言: 数学中,“图论”研究的是定点和边组成的图形. 计算机中,“网络拓扑”是数学概念中“图”的一个子集.因此,计算机网络拓扑图也可以由节点(即顶点)和链路(即边)来进行定义和绘制. 延伸: 无向图 ...

  8. 最短路径算法的实现(dijskstra):Python

    dijskstra最短路径算法步骤: 输入:图G=(V(G),E(G))有一个源顶点S和一个汇顶点t,以及对所有的边ij属于E(G)的非负边长出cij. 输出:G从s到t的最短路径的长度. 第0步:从 ...

  9. Python数模笔记-NetworkX(3)条件最短路径

    1.带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题,通常是求最短加权路径. 条件最短路径,指带有约束条件.限制条件的最短路径.例如,顶点约束,包括必经点或禁止点的限制:边 ...

随机推荐

  1. 潭州课堂25班:Ph201805201 第九课 函数作用域和匿名函数 (课堂笔记)

    匿名函数: lambda obj:str(obj).isdigit 语法规则:   lambda 参数:表达式 列: ma1 = map( lambda obj:'binbin','abcdef' ) ...

  2. android stuido 的几个点

  3. C#中如何把int转换成两个字符的string

    部门新开了项目,所以一整周的时间都在瞎忙,为什么称瞎忙?所负责的内容,并没有做好,也是一万个心塞啊.... 说一下最近碰到的一些问题. 用到了计时,但是比如定时是一分半钟,可是显示的时候,想让显示为1 ...

  4. Codeforces Round #519 by Botan Investments

    Codeforces Round #519 by Botan Investments #include<bits/stdc++.h> #include<iostream> #i ...

  5. 异步处理XML异步数据——以原生的JavaScript与jQuery中的$.ajax()为例

    此文档解决以下问题: 一.原生的JavaScript从服务器端输出XML格式数据 1.XMLHttpRequest对象的运用 XMLHttpRequest对象的open()方法 XMLHttpRequ ...

  6. fastcgi协议分析与实例

    http://blog.csdn.net/tanswer_/article/details/78879905

  7. Spring Boot中CrudRepository与JpaRepository Dao中JpaRepository和JpaSpecificationExecutor查询

    原文地址  https://blog.csdn.net/xuemengrui12/article/details/80525227?utm_source=blogxgwz0 https://www.i ...

  8. NatApp开启HTTPS访问方式

    一.首先需要到付费隧道中选择免费开启https 二.其次需要重新启动natapp服务,如下图出现两个隧道说明OK

  9. swift常用第三方库

    网络 Alamofire:http网络请求事件处理的框架. Moya:这是一个基于Alamofire的更高层网络请求封装抽象层. Reachability.swift:用来检查应用当前的网络连接状况. ...

  10. 如何将Ubuntu Server 12.04 升级到 Ubuntu Server 14.04 LTS

    升级Ubuntu 12.04到Ubuntu 14.04方法如下: 步骤一:在终端中运行下面的命令,它将安装所有的升级包.$ sudo apt-get update && sudo ap ...