时间限制:2s

空间限制:30M

题意:

有K台挤奶机(编号1~K),C头奶牛(编号K+1~K+C),给出各点之间距离。现在要让C头奶牛到挤奶机去挤奶,每台挤奶机只能处理M头奶牛,求使所走路程最远的奶牛的路程最短的方案。


Solution:

先Floyd求最短路,然后最大流二分答案ans。

若奶牛与挤奶机之间的距离大于ans则不连边,否则连容量为1的边。源向挤奶机连容量M的边,奶牛向汇连容量1的边,用最大流判可行性。

code

/*
最大流SAP
邻接表
思路:基本源于FF方法,给每个顶点设定层次标号,和允许弧。
优化:
1、当前弧优化(重要)。
1、每找到以条增广路回退到断点(常数优化)。
2、层次出现断层,无法得到新流(重要)。
时间复杂度(m*n^2)
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#define ms(a,b) memset(a,b,sizeof a)
using namespace std;
const int INF = ;
int G[INF][INF];
struct node {
int v, c, next;
} edge[INF*INF*];
int pHead[INF*INF], SS, ST, nCnt;
//同时添加弧和反向边, 反向边初始容量为0
void addEdge (int u, int v, int c) {
edge[++nCnt].v = v; edge[nCnt].c = c, edge[nCnt].next = pHead[u]; pHead[u] = nCnt;
edge[++nCnt].v = u; edge[nCnt].c = , edge[nCnt].next = pHead[v]; pHead[v] = nCnt;
}
int SAP (int pStart, int pEnd, int N) {
//层次点的数量 点的层次 点if(G[i][j]<l) l=G[i][j];的允许弧 当前走过边的栈
int numh[INF], h[INF], curEdge[INF], pre[INF];
//当前找到的流, 累计的流量, 当前点, 断点, 中间变量
int cur_flow, flow_ans = , u, neck, i, tmp;
//清空层次数组,
ms (h, ); ms (numh, ); ms (pre, -);
//将允许弧设为邻接表的任意if(G[i][j]<l) l=G[i][j];一条边
for (i = ; i <= N; i++) curEdge[i] = pHead[i];
numh[] = N;//初始全部点的层次为0
u = pStart;//从源点开始
//如果从源点能找到增广路
while (h[pStart] <= N) {
//找到增广路
if (u == pEnd) {
cur_flow = 1e9;
//找到当前增广路中的最大流量, 更新断点
for (i = pStart; i != pEnd; i = edge[curEdge[i]].v)
if (cur_flow > edge[curEdge[i]].c) neck = i, cur_flow = edge[curEdge[i]].c;
//增加反向边的容量
for (i = pStart; i != pEnd; i = edge[curEdge[i]].v) {
tmp = curEdge[i];
edge[tmp].c -= cur_flow, edge[tmp ^ ].c += cur_flow;
}
flow_ans += cur_flow;//累计流量
u = neck;//从断点开始找新的增广路
}
//找到一条允许弧
for ( i = curEdge[u]; i != ; i = edge[i].next)
if (edge[i].c && h[u] == h[edge[i].v] + ) break;
//继续DFS
if (i != ) {
curEdge[u] = i, pre[edge[i].v] = u;
u = edge[i].v;
}
//当前起点没有允许弧,从u找不到增广路
else {
//u所在的层次点减少一,且如果没有与当前点一个层次的点, 退出.
if ( == --numh[h[u]]) continue;
//有与u相同层次的点, 更新u的层次 ,回到上一个点
curEdge[u] = pHead[u];
for (tmp = N, i = pHead[u]; i != ; i = edge[i].next)
if (edge[i].c) tmp = min (tmp, h[edge[i].v]);
h[u] = tmp + ;
++numh[h[u]];
if (u != pStart) u = pre[u];
}
}
return flow_ans;
}
int k, c, m, n;
bool check (int tem) {
nCnt = ;
SS = n + , ST = n + ;
memset (pHead, , sizeof pHead);
for (int i = ; i <= k; i++) {
addEdge (i, ST, m);
for (int j = k + ; j <= k + c; j++)
if (G[j][i] <= tem)
addEdge (j, i, );
}
for (int i = k + ; i <= k + c; i++) addEdge (SS, i, );
int ans = SAP (SS, ST, ST);
if (ans == c) return ;
return ;
}
int main() {
/*
建图,前向星存边,表头在pHead[],边计数 nCnt.
SS,ST分别为源点和汇点
*/
scanf ("%d %d %d", &k, &c, &m);
n = k + c;
int l = , r = ;
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++) {
scanf ("%d", &G[i][j]);
if (G[i][j]==)
G[i][j] = 0x3f3f3f;
}
for (int t = ; t <= n; t++) {
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
if (G[i][j] > G[i][t] + G[t][j]) G[i][j] = G[i][t] + G[t][j];
}
int last = -;
while (l <= r) {
int mid = (l + r) >> ;
if (check (mid) ) {
last = mid;
r = mid - ;
}
else l = mid + ;
}
printf ("%d", last);
return ;
}

POJ 2112.Optimal Milking (最大流)的更多相关文章

  1. POJ 2112 Optimal Milking(最大流+二分)

    题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...

  2. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  3. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  4. Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)

    题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...

  5. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

  6. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  7. POJ 2112 Optimal Milking (Dinic + Floyd + 二分)

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 19456   Accepted: 6947 ...

  8. POJ 2112 Optimal Milking(最大流)

    题目链接:http://poj.org/problem?id=2112 Description FJ has moved his K (1 <= K <= 30) milking mach ...

  9. POJ 2112 Optimal Milking(二分+最大流)

    http://poj.org/problem?id=2112 题意: 现在有K台挤奶器和C头奶牛,奶牛和挤奶器之间有距离,每台挤奶器每天最多为M头奶挤奶,现在要安排路程,使得C头奶牛所走的路程中的最大 ...

  10. POJ - 2112 Optimal Milking (dijkstra + 二分 + 最大流Dinic)

    (点击此处查看原题) 题目分析 题意:在一个农场中有k台挤奶器和c只奶牛,每个挤奶器最多只能为m只奶牛挤奶,每个挤奶器和奶牛都视为一个点,将编号1~k记为挤奶器的位置,编号k+1~k+c记为奶牛的位置 ...

随机推荐

  1. 把测试app打包成ipa文件

    我终于把我的程序放到我的touch上了,其实把app放到touch上还有很多办法,这篇教程是主要讲怎么把app注册了,然后打包成一个ipa文件的. 先上官方文档:https://developer.a ...

  2. PHP 小代码

    //获取网上的一个文件function getUrlImage($url, $file = '', $maxExe = 0, $safe = false){ $urlExt = explode('.' ...

  3. Ethernet & IEEE 802.3 802.X 802.1ag-MEP

    ISO/IEC 7498标准,它定义了网络互联的7层框架,也就是开放式系统互连参考模型(OSI模型). 交换机好比是邻近的街道,而路由器则是街道的交汇点. (交换机第二层,即数据链路层,也有四层,七层 ...

  4. kickStart脚本

    kickstart是什么        许多系统管理员宁愿使用自动化的安装方法来安装红帽企业 Linux.为了满足这种需要,红帽创建了kickstart安装方法.使用kickstart,系统管理员可以 ...

  5. Web服务器性能/压力测试工具http_load、webbench、ab、Siege使用教程 - VPS侦探

    Web服务器性能/压力测试工具http_load.webbench.ab.Siege使用教程 - VPS侦探 http://soft.vpser.net/test/http_load/http_loa ...

  6. Android开发工具GenyMotion安装和使用方法

          好长时间没有再接触Android了,以至于GenyMotion出现这么久了,我还没有试用过,记得当时发布Android Studio时,当天我就开始试用了,好吧,看到GenyMotion这 ...

  7. shared pool详解

    共享池shared pool的概念用户提交的命令:解析.执行用户命令的解析解析的过程是一个相当复杂的过程,它要考虑各种可能的异常情况比如SQL语句涉及到的对象不存在.提交的用户没有权限等等而且还需要考 ...

  8. postgresql的/d命令

    ostgreSQL-psql常用命令 文章索引 [隐藏] \d命令 \d命令   1 2 3 格式: \d [ pattern ] \d [ pattern ] + 该命令将显示每个匹配关系(表,视图 ...

  9. java实现url转码、解码

    URL由来: 一般来说,URL只能使用英文字母.阿拉伯数字和某些标点符号,不能使用其他文字和符号.比如,世界上有英文字母的网址 “http://www.abc.com”,但是没有希腊字母的网址“htt ...

  10. char* 和char[]的差别

    下面内容均来自互联网,系笔者汇总并总结. 1. 问题介绍 问题引入: 在实习过程中发现了一个曾经一直默认的错误,相同char *c = "abc"和char c[]="a ...