Problem D

Rings'n'Ropes


Time Limit: 3 seconds

"Well, that seems to be the situation. But,
I don't want that, and you don't want that,
and Ringo here definitely doesn't want that."

Jules Winnfield

I have n tiny rings made of steel. I also have m pieces of rope, all of exactly the same length. The two ends of each piece of rope are tied to two different rings.

I am going to take one of the rings, L, into my left hand, and another ring, R into my right hand. Then I will pull the whole structure apart as hard as I can. Some of the ropes will be streched horizontally because of this. Others will hang down or bend out of shape. If I want the number of horizontally stretched ropes to be as large as possible, which L and R should I pick?

Assume that the stretching of ropes in negligible, they all have negligible thickness and are free to slide around the rings that they are tied to. The thickness and radius of each ring is negligible, too.

Input
The first line of input gives the number of cases, NN test cases follow. Each one starts with two lines containing n (

2<=
n<=120
) and m(

0<=
m<=
n(
n-1)/2
). The next m lines will each contain a pair of different rings (integers in the range [0, n-1]). Each pair of rings will be connected by at most one rope.

Output
For each test case, output the line containing "Case #x:", followed by the largest number of ropes that I can stretch horizontally by picking a pair of rings, L and R.

Sample Input Sample Output
4
2
1
0 1
3
3
0 1
1 2
2 0
6
6
0 1
0 5
1 3
5 4
3 2
4 2
6
7
0 1
0 5
1 3
1 4
5 4
3 2
4 2
Case #1: 1
Case #2: 1
Case #3: 6
Case #4: 7

题意:有n个戒指,中间连着m条绳子,现在要求出选定两个戒指,拉直之后,中间有多少绳子被绷直,求出绷直绳子最多的绳子数

思路:最短路,先用floyd打出整个最短路表,然后枚举两点,把两点间满足最短路的所有点都找出来,然后还要进行一个判断,如果起点到两个点的距离是相等的话,那么这条边是无法被拉直的。

代码:

#include <stdio.h>
#include <string.h>
#define INF 0x3f3f3f3f
const int N = 155; int T, n, m, cas = 0;
int a, b;
int g[N][N], f[N][N]; void init() {
memset(g, 0, sizeof(g));
memset(f, INF, sizeof(f));
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i ++) {
scanf("%d%d", &a, &b);
f[a][b] = f[b][a] = 1;
g[a][b] = g[b][a] = 1;
}
for (int i = 0; i < n; i ++)
f[i][i] = 0;
for (int k = 0; k < n; k ++)
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++) {
if (f[i][j] > f[i][k] + f[k][j])
f[i][j] = f[i][k] + f[k][j];
}
} void solve() {
init();
int ans = 0;
for (int u = 0; u < n; u ++)
for (int v = u + 1; v < n; v ++) {
int save[N], num = 0, count = 0;
for (int i = 0; i < n; i ++) {
if (f[u][v] == f[u][i] + f[i][v])
save[num ++] = i;
}
for (int i = 0; i < num; i ++)
for (int j = i + 1; j < num; j ++) {
if (g[save[i]][save[j]] && f[u][save[i]] != f[u][save[j]])
count ++;
}
if (count > ans)
ans = count;
}
printf("Case #%d: %d\n", ++cas, ans);
} int main() {
scanf("%d", &T);
while (T --) {
solve();
}
return 0;
}

UVA 10985 - Rings'n'Ropes(floyd)的更多相关文章

  1. UVA 10985 Rings'n'Ropes

    最短路 参考了Staingger的博客 感觉DP的状态记录还是有毛病.可以DFS寻找结果也. #include <map> #include <set> #include &l ...

  2. UVa 247 - Calling Circles(Floyd求有向图的传递闭包)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 436 - Arbitrage (II)(floyd)

    UVA 436 - Arbitrage (II) 题目链接 题意:给定一些国家货币的汇率.问是否能通过不断换货币使钱得到增长 思路:floyd,完事后推断一下有没有连到自己能大于1的情况 代码: #i ...

  4. UVa 1001 Say Cheese【floyd】

    题意:在一个三维的奶酪里面有n(n<=100)个洞,老鼠A想到达老鼠B的位置, 在洞里面可以瞬间移动,在洞外面的移动速度为10秒一个单位,求最短时间 看到n<=100,又是求最短时间,想到 ...

  5. uva 104 Arbitrage (DP + floyd)

    uva 104 Arbitrage Description Download as PDF Background The use of computers in the finance industr ...

  6. UVA 247 电话圈 (floyd传递闭包 + dfs输出连通分量的点)

    题意:输出所有的环: 思路:数据比较小,用三层循环的floyd传递闭包(即两条路通为1,不通为0,如果在一个环中,环中的所有点能互相连通),输出路径用dfs,递归还没有出现过的点(vis),输出并递归 ...

  7. Uva(10048),最短路Floyd

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  8. UVa 821 Page Hopping【Floyd】

    题意:给出一个n个点的有向图,任意两个点之间都相互到达,求任意两点间最短距离的平均值 因为n很小,所以可以用floyd 建立出图,然后用floyd,统计d[][]不为0且不为INF的边的和及条数,就可 ...

  9. UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)

    CALCULATOR CONUNDRUM   Alice got a hold of an old calculator that can display n digits. She was bore ...

随机推荐

  1. jquery 幻灯片

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. C#程序中:如何向xml文件中插入节点(数据)

    向xml文件中动态的添加节点(数据)是一件很爽的事,可以给你的程序带来很多的方便,比如在web中,如果你的Flash用到了xml文件,这个方法可以让你在后台就轻轻松松的更新你的Flash内容哦!一起研 ...

  3. php5.4安装ecshopphp5.4问题及解决

    includes/cls_template.php line422 将 $tag_sel = array_shift(explode(" ", $tag)); 这句话拆开为两句. $tag_exp = ...

  4. Android 网络通信 HTTP

    摘要 1. Http GET 方法访问网站 2. Http POST访问网站 3. HttpClient进行Get方式通信 4. HttpClient进行Post方式通信 -------------- ...

  5. 虚拟机linux下使用cuteftp

    操作系统  redhat9.0 一.主机配置 1.查看主机是否安装了ftp服务器,如果没有,安装它 在终端上输入setup,在弹出的界面中选择system services.查看弹出的界面中是否有vs ...

  6. POJ 2049 Finding Nemo bfs 建图很难。。

    Finding Nemo Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 6952   Accepted: 1584 Desc ...

  7. 典当行以及海尔java小节

    1.视图问题,发现jar包都出现在根目录下面了,非常不方便.结果如下表: 原始视图是JavaEE,切换到Java视图即可: 2.Tomcat编译的时候什么都没有加载,看到的是一堆红字,那是因为tomc ...

  8. Delphi基本图像处理代码

    //浮雕procedure Emboss(SrcBmp,DestBmp:TBitmap;AzimuthChange:integer);overload;var  i, j, Gray, Azimuth ...

  9. div+css页面居中代码

    普通div和html混写可以这样写,设置 text-align:center, margin:0px auto 最简单的方法就是 把你的body这样设置: <body style="t ...

  10. tomcat 系统架构与设计模式 第二部分 设计模式 转

    Tomcat 系统架构与设计模式,第 2 部分: 设计模式分析 许 令波, Java 开发工程师, 淘宝网 许令波,现就职于淘宝网,是一名 Java 开发工程师.对大型互联网架构设计颇感兴趣,并对一些 ...