Problem D

Rings'n'Ropes


Time Limit: 3 seconds

"Well, that seems to be the situation. But,
I don't want that, and you don't want that,
and Ringo here definitely doesn't want that."

Jules Winnfield

I have n tiny rings made of steel. I also have m pieces of rope, all of exactly the same length. The two ends of each piece of rope are tied to two different rings.

I am going to take one of the rings, L, into my left hand, and another ring, R into my right hand. Then I will pull the whole structure apart as hard as I can. Some of the ropes will be streched horizontally because of this. Others will hang down or bend out of shape. If I want the number of horizontally stretched ropes to be as large as possible, which L and R should I pick?

Assume that the stretching of ropes in negligible, they all have negligible thickness and are free to slide around the rings that they are tied to. The thickness and radius of each ring is negligible, too.

Input
The first line of input gives the number of cases, NN test cases follow. Each one starts with two lines containing n (

2<=
n<=120
) and m(

0<=
m<=
n(
n-1)/2
). The next m lines will each contain a pair of different rings (integers in the range [0, n-1]). Each pair of rings will be connected by at most one rope.

Output
For each test case, output the line containing "Case #x:", followed by the largest number of ropes that I can stretch horizontally by picking a pair of rings, L and R.

Sample Input Sample Output
4
2
1
0 1
3
3
0 1
1 2
2 0
6
6
0 1
0 5
1 3
5 4
3 2
4 2
6
7
0 1
0 5
1 3
1 4
5 4
3 2
4 2
Case #1: 1
Case #2: 1
Case #3: 6
Case #4: 7

题意:有n个戒指,中间连着m条绳子,现在要求出选定两个戒指,拉直之后,中间有多少绳子被绷直,求出绷直绳子最多的绳子数

思路:最短路,先用floyd打出整个最短路表,然后枚举两点,把两点间满足最短路的所有点都找出来,然后还要进行一个判断,如果起点到两个点的距离是相等的话,那么这条边是无法被拉直的。

代码:

#include <stdio.h>
#include <string.h>
#define INF 0x3f3f3f3f
const int N = 155; int T, n, m, cas = 0;
int a, b;
int g[N][N], f[N][N]; void init() {
memset(g, 0, sizeof(g));
memset(f, INF, sizeof(f));
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i ++) {
scanf("%d%d", &a, &b);
f[a][b] = f[b][a] = 1;
g[a][b] = g[b][a] = 1;
}
for (int i = 0; i < n; i ++)
f[i][i] = 0;
for (int k = 0; k < n; k ++)
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++) {
if (f[i][j] > f[i][k] + f[k][j])
f[i][j] = f[i][k] + f[k][j];
}
} void solve() {
init();
int ans = 0;
for (int u = 0; u < n; u ++)
for (int v = u + 1; v < n; v ++) {
int save[N], num = 0, count = 0;
for (int i = 0; i < n; i ++) {
if (f[u][v] == f[u][i] + f[i][v])
save[num ++] = i;
}
for (int i = 0; i < num; i ++)
for (int j = i + 1; j < num; j ++) {
if (g[save[i]][save[j]] && f[u][save[i]] != f[u][save[j]])
count ++;
}
if (count > ans)
ans = count;
}
printf("Case #%d: %d\n", ++cas, ans);
} int main() {
scanf("%d", &T);
while (T --) {
solve();
}
return 0;
}

UVA 10985 - Rings'n'Ropes(floyd)的更多相关文章

  1. UVA 10985 Rings'n'Ropes

    最短路 参考了Staingger的博客 感觉DP的状态记录还是有毛病.可以DFS寻找结果也. #include <map> #include <set> #include &l ...

  2. UVa 247 - Calling Circles(Floyd求有向图的传递闭包)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 436 - Arbitrage (II)(floyd)

    UVA 436 - Arbitrage (II) 题目链接 题意:给定一些国家货币的汇率.问是否能通过不断换货币使钱得到增长 思路:floyd,完事后推断一下有没有连到自己能大于1的情况 代码: #i ...

  4. UVa 1001 Say Cheese【floyd】

    题意:在一个三维的奶酪里面有n(n<=100)个洞,老鼠A想到达老鼠B的位置, 在洞里面可以瞬间移动,在洞外面的移动速度为10秒一个单位,求最短时间 看到n<=100,又是求最短时间,想到 ...

  5. uva 104 Arbitrage (DP + floyd)

    uva 104 Arbitrage Description Download as PDF Background The use of computers in the finance industr ...

  6. UVA 247 电话圈 (floyd传递闭包 + dfs输出连通分量的点)

    题意:输出所有的环: 思路:数据比较小,用三层循环的floyd传递闭包(即两条路通为1,不通为0,如果在一个环中,环中的所有点能互相连通),输出路径用dfs,递归还没有出现过的点(vis),输出并递归 ...

  7. Uva(10048),最短路Floyd

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  8. UVa 821 Page Hopping【Floyd】

    题意:给出一个n个点的有向图,任意两个点之间都相互到达,求任意两点间最短距离的平均值 因为n很小,所以可以用floyd 建立出图,然后用floyd,统计d[][]不为0且不为INF的边的和及条数,就可 ...

  9. UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)

    CALCULATOR CONUNDRUM   Alice got a hold of an old calculator that can display n digits. She was bore ...

随机推荐

  1. boost::xml——基本操作以及中文乱码解决方案 (续)

    本博文主要想说明以下两点: 1.对于上一篇的<boost::xml——基本操作以及中文乱码解决方案>解释,这篇博文基本解决了正确输入输出中英文问题,但是好像还没有解决修改中文出现乱码的问题 ...

  2. CSS_Bootstrap

    ①BS学习的基础 第一个例子 <!DOCTYPE html> <html lang="en"> <head> <title>Boot ...

  3. Less小记

    Less除了在引用的时候link和script有顺序之外,在编译过程中,less中的代码顺序也会造成对样式的重置.

  4. javascript图片预先加载

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. 博客系统-3.0CodeIgniter系统SAE版本的配置 application/config/

    autoload.php(系统启动时自动加载的文件:包,类库,驱动,方法助手,配置) $autoload['libraries'] = array('database', 'access', 'pag ...

  6. SEMAT[软件工程方法和理论 Software Engineering Method and Theory]

    Agile software development Agile software development is a group of software development methods bas ...

  7. IOC(控制反转)与DI(依赖注入)的个人理解。

    控制反转IOC(Inversion of Control)的三个需要理清问题: 1.谁控制了谁,控制了什么东西?IOC容器控制了依赖对象的创建. 2.谁得到了反转? 一般的应用程序是,直接创建依赖于该 ...

  8. gcc/g++编译

    1. gcc/g++在执行编译工作的时候,总共需要4步 (1).预处理,生成.i的文件[预处理器cpp] (2).汇编,将预处理后的文件转换成汇编语言,生成文件.s[编译器egcs] (3).编译,将 ...

  9. 游戏服务器:到底使用UDP还是TCP

    http://blog.jobbole.com/64638/ 在编写网络游戏的时候,到底使用UDP还是TCP的问题迟早都要面对. 一般来说你会听到人们这样说:“除非你正在写一个动作类游戏,否则你就用T ...

  10. the design of everyday things

    Design principles: Conceptual models Feedback Constraints Affordances All are important. This is wha ...