1025: [SCOI2009]游戏

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 1533  Solved: 964
[Submit][Status][Discuss]

Description

windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们对应的数字。如此反复,直到序列再次变为1,2,3,……,N。 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6 3 1 2 4 5 6 1 2 3 5 4 6 2 3 1 4 5 6 3 1 2 5 4 6 1 2 3 4 5 6 这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。

Input

包含一个整数,N。

Output

包含一个整数,可能的排数。

Sample Input

【输入样例一】
3
【输入样例二】
10

Sample Output

【输出样例一】
3
【输出样例二】
16

HINT

【数据规模和约定】

100%的数据,满足 1 <= N <= 1000 。

Source

题解:

如果一些数的最小公倍数为Z,而Z=x1^p1*x2^p2...xm^pm的话,当它们为x1^p1,x2^p2...时,它们的和最小。我们尝试尽量把这个最小化,因为达到最小化后,如果和小于等于N(不足可添1),就可以判定Z可以取到了。然后,可以发现,我们可以通过枚举xi^pi(质因数和其对应指数)来枚举Z(而且这样肯定不会重复),限制条件是和小于等于N。那么用dp[k][s]表示用前k个质数,枚举出来的所有Z的那个最小和为s的情况数。头疼,就写个记忆化好了。

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define PAU putchar(' ')
#define ENT putchar('\n')
using namespace std;
const int maxn=+,maxm=+,maxp=+;
long long dp[maxn][maxm];int P[maxn],sz,n;bool pri[maxp];
void makepri(int n){
int lim=sqrt(n);memset(pri,true,sizeof(pri));
for(int i=;i<=lim;i++)if(pri[i])for(int j=i*i;j<=n;j+=i)pri[j]=false;
for(int i=;i<=n;i++)if(pri[i])P[++sz]=i;return;
}
long long calc(int k,int s){
if(dp[k][s]>=)return dp[k][s];if(!k)return dp[k][s]=;
dp[k][s]=calc(k-,s);
for(int tmp=P[k];tmp<=s;tmp*=P[k])dp[k][s]+=calc(k-,s-tmp);
return dp[k][s];
}
inline int read(){
int x=,sig=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')sig=-;ch=getchar();}
while(isdigit(ch))x=*x+ch-'',ch=getchar();
return x*=sig;
}
inline void write(long long x){
if(x==){putchar('');return;}if(x<)putchar('-'),x=-x;
int len=;long long buf[];while(x)buf[len++]=x%,x/=;
for(int i=len-;i>=;i--)putchar(buf[i]+'');return;
}
void init(){
n=read();
makepri(n);memset(dp,-,sizeof(dp));
write(calc(sz,n));
return;
}
void work(){
return;
}
void print(){
return;
}
int main(){init();work();print();return ;}

BZOJ 1025 [SCOI2009]游戏的更多相关文章

  1. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  2. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  3. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  4. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  5. BZOJ 1025 SCOI2009 游戏 动态规划

    标题效果:特定n.行定义一个替代品1~n这种更换周期发生后,T次要(T>0)返回到原来的顺序 找到行的所有可能的数 循环置换分解成若干个,然后行位移数是这些周期的长度的最小公倍数 因此,对于一些 ...

  6. BZOJ 1025: [SCOI2009]游戏 [置换群 DP]

    传送门 题意:求$n$个数组成的排列变为升序有多少种不同的步数 步数就是循环长度的$lcm$..... 那么就是求$n$划分成一些数几种不同的$lcm$咯 然后我太弱了这种$DP$都想不出来.... ...

  7. bzoj 1025: [SCOI2009]游戏【数学+dp】

    很容易发现行数就是lcm环长,也就是要求和为n的若干数lcm的个数 有结论若p1^a1+p2^a2+...+pm^am<=n,则ans=p1^a1p2^a2..*pm^am是n的一个可行答案.( ...

  8. BZOJ 1025 [SCOI2009]游戏 (DP+分解质因子)

    题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{ ...

  9. 【BZOJ】1025: [SCOI2009]游戏(置换群+dp+特殊的技巧+lcm)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 首先根据置换群可得 $$排数=lcm\{A_i, A_i表示循环节长度\}, \sum_{i= ...

随机推荐

  1. hash定义

    * 若结构中存在关键字和K相等的记录,则必定存储在f(K)的位置上.由此,不需比较便可直接取得所查记录.这个对应关系f称为 散列函数(Hash function),按这个思想建立的表为 散列表. * ...

  2. [Unity-24] Unity的四种载入场景的方法

    Unity官方提供了4种载入场景(scene)的方法.各自是: 1. Application.LoadLevel():同步载入 2. Application.LoadLevelAsync():异步载入 ...

  3. Valgrind 安装与使用

    调不尽的内存泄漏,用不完的Valgrind Valgrind 安装 1. 到www.valgrind.org下载最新版valgrind-3.2.3.tar.bz2 2. 解压安装包:tar –jxvf ...

  4. [转] Maven镜像配置

    参考:许晓斌的<Maven实战> 镜像是为了提供更快的服务 如图:X就认为是Y的一个镜像. 编辑settings.xml配置中央仓库镜像: <settings> ... < ...

  5. MIUI6&7桌面角标开源代码简介

    MIUI6&7桌面角标开源代码简介 MIUI6&7上重新设计了桌面app图标的角标显示,基本规则如下: 一.基本介绍 1.默认的情况 当app 向通知栏发送了一条通知 (通知不带进度条 ...

  6. Android上传文件到服务器(转)

    Android中实现上传文件,其实是很简单的,和在java里面是一样的,基本上都是熟悉操作输出流和输入流!还有一个特别重要的就是需要配置content-type的一些参数!如果这些都弄好了,上传就很简 ...

  7. codevs 1242 布局(查分约束+SPFA)

    /* 查分约束. 给出的约束既有>= 又有<= 这时统一化成一种 Sb-Sa>=x 建边 a到b 权值为x Sb-Sa<=y => Sa-Sb>=-y 建边 b到a ...

  8. 移动端网站或APP点击后出现闪动或灰色背景

    隐藏文本框阴影 input, textarea{-webkit-appearance: @none;} 取消手机点击屏幕时,会出现的灰块 html,body{-webkit-text-size-adj ...

  9. ChesFrame框架介绍

    一直以来想写一个框架,想达到的目的: 1.对曾经做过项目的总结 2.节约构建系统的成本,不用每次都从零开始做起 3.写框架并在使用中不断的完善框架,这也是个积攒过程. 经历了一个多月的时间,一个基本的 ...

  10. 千万数量级分页存储过程 +AspNetPager现实分页

    存储过程 USE [ForeignTradeDB] GO /****** Object: StoredProcedure [dbo].[CommonGetDataPager] Script Date: ...