模板-->单变元模线性方程
如果有相应的OJ题目,欢迎同学们提供相应的链接
相关链接
简单的测试
None
代码模板
/*
* TIME COMPLEXITY:O(logN)
* PARAMS:
* a ax+ny=b
* b
* n
*
* d=gcd(a,n),ax+ny=d,==>x.But the x is not minimum positive number.See below.
* the x satisfy ax==d(mod n).If x larger than n,then x=n+y.Thus a(n+y)==b(mod n)==>ay==b(mod n),do that x%=n.After that
* (ax+na)%n==b%n is correct.x+=n. The code:x%=n,x+=n,x%=n.
*
* Actually,ax'==b(mod n),and b is times of d.So change x'=x*(b/d).
* Now ax==b(mod n)[x=x'],but x is not minimum number in this equation.
* Then a'x=b'(mod n'),a'=a/d,b'=b/d,n'=n/d.According to the second line in comment,x=x%n'==>x=x%(n/d).
* Similarlly,i times n/d+ans[0].
* Last %n is another limit.
*/
vector <long long> line_mode_equation(long long a,long long b,long long n){
long long x,y;
long long d=extend_gcd(a,n,x,y);
vector<long long> ans;
ans.clear();
if(b%d==0){
x%=n;x+=n;x%=n;
ans.push_back((x*(b/d)%(n/d)+n/d)%(n/d));
for(long long i=1;i<d;i++)
ans.push_back((ans[0]+i*n/d)%n);
}
return ans;
}
模板-->单变元模线性方程的更多相关文章
- POJ Widget Factory 【求解模线性方程】
传送门:http://poj.org/problem?id=2947 Widget Factory Time Limit: 7000MS Memory Limit: 65536K Total Su ...
- WIP - 离散任务点击组件-错误:LOCATOR.CONTROL 的变元无效:ORG_LOCATOR_CONTROL=''
Getting Error "Invalid Argument to LOCATOR.CONTROL: ORG_LOCATOR_CONTROL='' in Material Requirem ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
- C Looooops(扩展欧几里得+模线性方程)
http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...
- 4.9 省选模拟赛 生成树求和 变元矩阵树定理 生成函数 iDFT 插值法
有同学在loj上找到了加强版 所以这道题是可以交的.LINK:生成树求和 加强版 对于30分 爆搜 可实际上我爆搜只过了25分 有同学使用按秩合并并茶几的及时剪枝通过了30分. const int M ...
- [ACM_其他] Modular Inverse [a关于模m的逆 模线性方程]
Description The modular modular multiplicative inverse of an integer a modulo m is an integer x such ...
- POJ 3185 The Water Bowls(高斯消元-枚举变元个数)
题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最 ...
- POJ2115——C Looooops(扩展欧几里德+求解模线性方程)
C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...
- POJ2115 C Looooops 模线性方程(扩展欧几里得)
题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...
随机推荐
- bzoj3047: Freda的传呼机 && 2125: 最短路
Description 为了随时与rainbow快速交流,Freda制造了两部传呼机.Freda和rainbow所在的地方有N座房屋.M条双向光缆.每条光缆连接两座房屋,传呼机发出的信号只能沿着光缆传 ...
- 常用 Linux 命令
Check page size: getconf PAGESIZE Check memory information: cat /proc/meminfo Check number of hugepa ...
- [151225] Python3 实现最大堆、堆排序,解决TopK问题
参考资料: 1.算法导论,第6章,堆排序 堆排序学习笔记及堆排序算法的python实现 - 51CTO博客 堆排序 Heap Sort - cnblogs 小根堆实现优先队列:Python实现 -cn ...
- [BestCoder Round#26] Apple 【组合数学】
题目链接:HDOJ - 5160 题目分析 第一眼看上去,要求统计所有不同排列对答案的贡献.嗯...完全没有想法. 但是,如果我们对每个数字单独考虑,计算这个数字在总答案中的贡献,就容易多了. 对于一 ...
- Nah Lock: 一个无锁的内存分配器
概述 我实现了两个完全无锁的内存分配器:_nalloc 和 nalloc. 我用benchmark工具对它们进行了一组综合性测试,并比较了它们的指标值. 与libc(glibc malloc)相比, ...
- android小文章——手机照片上传服务器方法
手机上传:http://blog.csdn.net/bitter_2014/article/details/40618587
- iOS 16进制颜色和UIcolor的转换
各种颜色之间的转换,会陆续更新, 实现了 16进制颜色(HEX).RGBA.HSBA.UIColor之间的 相互转换 使用示例(加号方法,类名调用) //UIColor 转 RGB.HSB RGBA ...
- 追踪CM_CONTROLCHANGE消息的产生和执行过程,可以较好的领会VCL的思想(就是到处通知,但耦合性很弱)
追踪CM_CONTROLCHANGE消息的流向,可以较好的 测试代码: procedure TForm1.Button1Click(Sender: TObject);var Image2 : TIma ...
- 【HDOJ】2531 Catch him
简单BFS.就是要把所有的D点当成一个整体考虑(整体移动). /* 2531 */ #include <iostream> #include <queue> #include ...
- id有空格获取不到元素