Description

Input

Output

对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arrange"(不包含引号)。每个输出后面加"--------------------"

Sample Input

4
4 9 3
brysj,
hhrhl.
yqqlm,
gsycl.
4 9 2
brysj,
hhrhl.
yqqlm,
gsycl.
1 1005 6
poet
1 1004 6
poet

Sample Output

108
--------------------
32
--------------------
Too hard to arrange
--------------------
1000000000000000000
--------------------

【样例说明】
前两组输入数据中每行的实际长度均为6,后两组输入数据每行的实际长度均为4。一个排版方案中每行相邻两个句子之间的空格也算在这行的长度中(可参见样例中第二组数据)。每行末尾没有空格。

HINT

总共10个测试点,数据范围满足:

测试点 T N L P
1 ≤10 ≤18 ≤100 ≤5
2 ≤10 ≤2000 ≤60000 ≤10
3 ≤10 ≤2000 ≤60000 ≤10
4 ≤5 ≤100000 ≤200 ≤10
5 ≤5 ≤100000 ≤200 ≤10
6 ≤5 ≤100000 ≤3000000 2
7 ≤5 ≤100000 ≤3000000 2
8 ≤5 ≤100000 ≤3000000 ≤10
9 ≤5 ≤100000 ≤3000000 ≤10
10 ≤5 ≤100000 ≤3000000 ≤10
所有测试点中均满足句子长度不超过30。

题解:
https://www.byvoid.com/blog/noi-2009-poet
code:
 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
typedef long double int64;
const int maxn=;
const int maxl=;
const int64 maxval=1E18;
char s[maxl];
int T,n,l,p;
int64 sum[maxn],f[maxn];
bool flag;
int64 ksm(int64 a,int b){
int64 t;
for (t=;b;a*=a,b>>=) if (b&) t*=a;
return t;
}
int64 calc(int j,int i){return f[j]+ksm(abs(sum[i]-sum[j]+i-j--l),p);}
struct Stack{
int top,pos;
struct Data{
int st,ed,id;
}s[maxn],tmp;
void init(){s[top=]=(Data){,n,},pos=;}
bool cmp(int t,int x,int y){return calc(x,t)<calc(y,t);}
int get(int id){
int l=tmp.st,r=tmp.ed,m,a=tmp.id;
while (l<r){
m=((l+r)>>)+;
if (cmp(m,a,id)) l=m; else r=m-;
}
return l;
}
void push(int id){
while (top&&!cmp(s[top].st,s[top].id,id)) top--;
tmp=s[top--];
int m=get(id);
if (tmp.st<=m) s[++top]=(Data){tmp.st,m,tmp.id};
if (m<n) s[++top]=(Data){m+,n,id};
}
int64 query(int x){
while (x>s[pos].ed) pos++;
return calc(s[pos].id,x);
}
}stack;
int main(){
for (read(T);T;T--){
read(n),read(l),read(p);
for (int i=;i<=n;i++) scanf("%s",s+),sum[i]=sum[i-]+strlen(s+);
stack.init(),flag=;
for (int i=;i<=n;i++){
f[i]=stack.query(i);
stack.push(i);
}
if (f[n]>maxval) puts("Too hard to arrange");
else printf("%lld\n",(long long)f[n]);
puts("--------------------");
}
return ;
}

bzoj1563: [NOI2009]诗人小G的更多相关文章

  1. bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)

    目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...

  2. [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)

    模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...

  3. BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)

    设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...

  4. 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)

    传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...

  5. BZOJ1563:[NOI2009]诗人小G(决策单调性DP)

    Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...

  6. BZOJ1563 NOI2009 诗人小G【决策单调性优化DP】

    LINK 因为是图片题就懒得挂了 简要题意:有n个串,拼接两个串需要加一个空格,给你l和p,问你拼接后每个串的总长减l的绝对值的p次方的最小值 首先打表发现一下这题是决策单调的对于所有数据都成立就当他 ...

  7. BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)

    题意 题目链接 Sol 很显然的一个dp方程 \(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\) 其中\(sum_i = \sum_{j = 1}^i len ...

  8. [bzoj1563][NOI2009]诗人小G(决策单调性优化)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1563 分析: 首先可得朴素的方程:f[i]=min{f[j]+|s[j]-j-s[i] ...

  9. 1563: [NOI2009]诗人小G

    1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...

随机推荐

  1. js生成随机数的方法实例总结

    js生成随机数主要用到了内置的Math对象的random()方法.用法如:Math.random().它返回的是一个 0 ~ 1 之间的随机数.有了这么一个方法,那生成任意随机数就好理解了.比如实际中 ...

  2. sqlserver 遇到以零作除数错误的处理 不报错的解决方法

    使用sqlserver 的选项来禁止出现以零除的错误中断,让而让其为null set ansi_warnings offSET ARITHABORT offSET ARITHIGNORE on sel ...

  3. Tomcat工作原理(转)

    Tomcat简介 作者:杨晓(http://blog.sina.com.cn/u/1237288325) 一.Tomcat背景 自从JSP发布之后,推出了各式各样的JSP引擎.Apache Group ...

  4. 匿名类型和Object转换

    本文转载:http://www.cnblogs.com/JustRun1983/archive/2012/05/13/2497997.html net中的匿名类型非常好用, 但是开发中遇到一个问题,当 ...

  5. 写在新建博客的第一天 分类: fool_tree的笔记本 2014-11-08 17:57 144人阅读 评论(0) 收藏

    来CSDN开博客的目的有两个: 其一是因为CSDN的代码输出,看过一些博文,觉得这里的代码输出真的很漂亮: 其二则是因为,感觉自己印象笔记用久了之后,渐渐地几乎不再自己写些东西了,习惯了方便的剪藏插件 ...

  6. 用.class文件创建对象

    第一步:  给你一个编译好的class文件以及它的包名,创建一个对象出来. 1)class文件源代码 package com.wsc.classloader; public class Tool{ p ...

  7. 生成 git 密钥 步骤

    http://blog.csdn.net/wfdtxz/article/details/8678982 git使用https协议,每次pull, push都要输入密码,相当的烦.使用git协议,然后使 ...

  8. 关于怎么将Quartus和Nios程序一起固化到FPGA里面

    系统:win8.1 SDK:Quartus II 14.1 FPGA:Cyclone IV 1.将Quartus生成的.pof文件(配置Flash即可自动生成,这里不讨论),与Nios生成的.elf文 ...

  9. Android微信智能心跳方案

    前言:在13年11月中旬时,因为基础组件组人手紧张,Leo安排我和春哥去广州轮岗支援.刚到广州的时候,Ray让我和春哥对Line和WhatsApp的心跳机制进行分析.我和春哥抓包测试了差不多两个多礼拜 ...

  10. Ant配置

    首先去官网下载一个ant的文件 http://ant.apache.org/bindownload.cgi