【原】 Spark中Task的提交源码解读
版权声明:本文为原创文章,未经允许不得转载。
复习内容:
Spark中Stage的提交 http://www.cnblogs.com/yourarebest/p/5356769.html
Spark中Task的提交
1.在复习内容部分我们介绍了在方法onStageSubmitted中,Stage的提交,那么在该方法中还有Task的提交,如下所示:
override def onStageSubmitted(stageSubmitted: SparkListenerStageSubmitted): Unit = synchronized {
//(1)Stage的提交,详见文章-Spark中Task的提交
//(2)Task的提交
//broadcasted task的二进制,用来分发tasks给executors。
//注意:我们broadcast RDD的拷贝并且对于每一个task我们将要反序列化,这意味着每个task得到一个不同的RDD 拷贝
var taskBinary: Broadcast[Array[Byte]] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
val taskBinaryBytes: Array[Byte] = stage match {
case stage: ShuffleMapStage =>
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef).array()
case stage: ResultStage =>
closureSerializer.serialize((stage.rdd, stage.func): AnyRef).array()
}
//将序列化后的task广播出去
taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
case e: NotSerializableException =>
abortStage(stage, "Task not serializable: " + e.toString, Some(e))
runningStages -= stage
return
case NonFatal(e) =>
abortStage(stage, s"Task serialization failed: $e\n${e.getStackTraceString}", Some(e))
runningStages -= stage
return
}
//根据stage生成tasks
val tasks: Seq[Task[_]] = try {
stage match {
//对于ShuffleMapStages生成ShuffleMapTask
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = stage.rdd.partitions(id)
//可见一个partition,一个task,一个位置信息
new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, stage.internalAccumulators)
}
//对于ResultStage生成ResultTask
case stage: ResultStage =>
val job = stage.resultOfJob.get
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = stage.rdd.partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, id, stage.internalAccumulators)
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
runningStages -= stage
return
}
//如果tasks的num大于0
if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingPartitions ++= tasks.map(_.partitionId)
logDebug("New pending partitions: " + stage.pendingPartitions)
//调用taskScheduler提交TaskSet,详见2
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptId, stage.firstJobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
//因为我们之前就已经发送了事件SparkListenerStageSubmitted,所以我们标记Stage为completed防止没有任务提交
markStageAsFinished(stage, None)
//将debugString记录到日志中
val debugString = stage match {
case stage: ShuffleMapStage =>
s"Stage ${stage} is actually done; " +
s"(available: ${stage.isAvailable}," +
s"available outputs: ${stage.numAvailableOutputs}," +
s"partitions: ${stage.numPartitions})"
case stage : ResultStage =>
s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})"
}
logDebug(debugString)
}
}
2.Task的提交会调用taskScheduler的submitTasks方法进行,TaskScheduler是trait,它的唯一的具体实现是TaskSchedulerImpl,submitTasks方法如下所示:
override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
//为一个taskSet创建一个TaskSetManager
val manager = createTaskSetManager(taskSet, maxTaskFailures)
val stage = taskSet.stageId
val stageTaskSets =
taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
stageTaskSets(taskSet.stageAttemptId) = manager
val conflictingTaskSet = stageTaskSets.exists { case (, ts) =>
ts.taskSet != taskSet && !ts.isZombie
}
if (conflictingTaskSet) {
throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
s" ${stageTaskSets.toSeq.map{._2.taskSet.id}.mkString(",")}")
}
//将taskSetManager和taskSet添加到两种可调度的tree中,FIFO or FAIR
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)
if (!isLocal && !hasReceivedTask) {
//一个定时器
starvationTimer.scheduleAtFixedRate(new TimerTask() {
override def run() {
if (!hasLaunchedTask) {
logWarning("Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient resources")
} else {
this.cancel()
}
}
}, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
}
hasReceivedTask = true
}
//不同(集群)模式进行资源的分配
backend.reviveOffers()
}
这样我们就完成了Task的提交,那么不同模式对于Task的资源又是如何分配的呢,我们后面介绍。
【原】 Spark中Task的提交源码解读的更多相关文章
- 【原】Spark中Job的提交源码解读
版权声明:本文为原创文章,未经允许不得转载. Spark程序程序job的运行是通过actions算子触发的,每一个action算子其实是一个runJob方法的运行,详见文章 SparkContex源码 ...
- 【原】Spark中Stage的提交源码解读
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Job如何划分为Stage http://www.cnblogs.com/yourarebest/p/5342424.html 1 ...
- HttpServlet中service方法的源码解读
前言 最近在看<Head First Servlet & JSP>这本书, 对servlet有了更加深入的理解.今天就来写一篇博客,谈一谈Servlet中一个重要的方法-- ...
- sklearn中LinearRegression使用及源码解读
sklearn中的LinearRegression 函数原型:class sklearn.linear_model.LinearRegression(fit_intercept=True,normal ...
- 【原】Spark不同运行模式下资源分配源码解读
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Task的提交源码解读 http://www.cnblogs.com/yourarebest/p/5423906.html Sch ...
- 15、Spark Streaming源码解读之No Receivers彻底思考
在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Appr ...
- Spark技术内幕:Stage划分及提交源码分析
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...
- Spark学习之路 (十六)SparkCore的源码解读(二)spark-submit提交脚本
一.概述 上一篇主要是介绍了spark启动的一些脚本,这篇主要分析一下Spark源码中提交任务脚本的处理逻辑,从spark-submit一步步深入进去看看任务提交的整体流程,首先看一下整体的流程概要图 ...
- Apache Spark源码走读之23 -- Spark MLLib中拟牛顿法L-BFGS的源码实现
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读. 拟牛顿法 数学原理 代码实现 L-BFGS算法中使 ...
随机推荐
- JavaScript 判断用户输入的邮箱及手机格式是否正确
JavaScript判断用户输入的邮箱格式是否正确.判断用户输入的手机号格式是否正确,下面有个不错的示例,感兴趣的朋友可以参考下. 复制代码代码如下: /* * 功能:判断用户输入的邮箱格式是否正确 ...
- Window_Open详解
Window_Open详解 引:Window_Open详解一.window.open()支持环境:JavaScript1.0+/JScript1.0+/Nav2+/IE3+/Opera3+ 二. ...
- About building ant & install ant on centos7 {ant source code 1.94}
hamcrest-junit-2.0.0.0.jar java-hamcrest-2.0.0.0.jar copy to ant-sourceCodeDir/lib/o ...
- Pjax介绍及在asp.net MVC3中使用pjax的简单示例
相信很多人对ajax并不陌生,对ajax的一些优点也了如指掌,如:局部刷新改善用户体验,减少开销,让服务器和浏览器之间的响应更快等. 但是它的缺点也是很显而易见的: AJAX大量的使用了javascr ...
- linux编译相关知识
(1)用g++编译程序时,-l 与-L各是什么意思 http://bbs.chinaunix.net/thread-107364-1-1.html 感谢作者 -l 表示:编译程序到系统默认路进搜索,如 ...
- java单例模式使用及注意事项
1. 说明 1)单例模式:确保一个类只有一个实例,自行实例化并向系统提供这个实例 2)单例模式分类:饿单例模式(类加载时实例化一个对象给自己的引用),懒单例模式(调用取得实例的方法如getInstan ...
- 简单的map转换成Bean的工具
简单的map转换成Bean的工具 package com.sd.microMsg.util; import java.lang.reflect.Field; import java.lang.refl ...
- BT5之配置笔记
BT5本来就是用Ubuntu 10.04做得蓝本,所以,我在配置BT5的时候,基本上都是按照Ubuntu 10.04的配置方法,在配置BT5 1 系统基本设置 1.1 安装Ubuntu10.0 ...
- Sql狗血的Bit类型赋值与取值
Bit 数据类型在 SQL Server 数据库中以存储 1.0 进行存储. 往数据库中添加,修改 bit 类型的字段时,只能用 0 或者 1. 关于修改 Bit 类型的字段 1.若使用 SQL 语句 ...
- 查看linux系统的版本
1. 查看内核版本命令: 1) [root@SOR_SYS ~]# cat /proc/version Linux version 2.6.18-238.el5 (mockbuild@x86-012. ...