vijosP1371 方程的解

链接:https://vijos.org/p/1371

【思路】

组合公式+快速幂+高精单精。

求x^x %1000:因为x最大为2^31-1所以用快速幂在O(logx)的时间内求解g。

安排剩下的k个数:C(g-1,k-1) 相当于把g个数划分到k个不可空的集合中的数目,依旧可以看作插挡板。

考虑这类题目我们可以先从简单情况入手写一个能够处理简单数据的代码,然后再考虑优化的问题。

【代码】

 #include<iostream>
using namespace std; typedef long long LL;
struct Bign{
int len,N[];
};
LL pow(int x) {
LL tmp=x,ans=;
while(x) {
if(x&) ans=(ans*tmp)%;
tmp=(tmp*tmp)%;
x>>=;
}
return ans;
} void multi(Bign& a,int x)
{
for(int j=;j<a.len;j++) a.N[j] *= x;
int i=;
while(i<a.len || a.N[i]>) {
a.N[i+] += a.N[i]/;
a.N[i] %= ;
i++; //i++
}
if(a.N[i]) a.len=i+; //判断
else a.len=i;
} void div(Bign& a,int x) {
for(int i=a.len-;i>;i--) { //由高位到低位
a.N[i-] += a.N[i]%x*;
a.N[i] /= x;
}
a.N[]/=x; //最后一位
while(a.N[a.len-]==) a.len--; //删除前导0
} int main() {
int k,x;
cin>>k>>x;
LL g=pow(x); //x^x
g--; k--;
Bign ans; ans.len=,ans.N[]=;
for(int i=;i<=k;i++) {
multi(ans,g-k+i);
div(ans,i);
}
for(int i=ans.len-;i>=;i--) cout<<ans.N[i];
return ;
}

vijosP1371 方程的解的更多相关文章

  1. 方程的解_NOI导刊2010提高

    方程的解 给定x,求\(a_1+a_2+...+a_k=x^x\ mod\ 1000\)的正整数解解的组数,对于100%的数据,k≤100,x≤2^31-1. 解 显然x是可以快速幂得到答案的,而该问 ...

  2. P1771 方程的解_NOI导刊2010提高(01)

    P1771 方程的解_NOI导刊2010提高(01) 按题意用快速幂把$g(x)$求出来 发现这不就是个组合数入门题吗! $k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法? 根据插板法, ...

  3. 【Java例题】4.4使用牛顿迭代法求方程的解

    4. 使用牛顿迭代法求方程的解:x^3-2x-5=0区间为[2,3]这里的"^"表示乘方. package chapter4; public class demo4 { publi ...

  4. 模拟7题解 T1方程的解

    方程的解 [扩展欧几里德] 首先进行特判,两个小时基本想到了,除了a!=0,b==0,a*c<0这种情况 其次就是一般情况: 首先exgcd求出ax+by=GCD(a,b)的一组任意解 然后两边 ...

  5. 洛谷P1771 方程的解

    P1771 方程的解 都知道这个题可以用隔板法做 把这个\(g(x)\)想象为.....\(g(x)\)个苹果? 因为解是正整数,所以给这些"苹果"分组的时候每组最少有一个 然后我 ...

  6. codevs3732==洛谷 解方程P2312 解方程

    P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 已知多项式方程: a ...

  7. C++ 二分法求解方程的解

    二分法是一种求解方程近似根的方法.对于一个函数 f(x)f(x),使用二分法求 f(x)f(x) 近似解的时候,我们先设定一个迭代区间(在这个题目上,我们之后给出了的两个初值决定的区间 [-20,20 ...

  8. [CSP-S模拟测试]:方程的解(小学奥数)

    题目描述 给出一个二元一次方程$ax+by=c$,其中$x$.$y$是未知数,求它的正整数解的数量. 输入格式 第一行一个整数$T$,表示有$T$组数据.接下来$T$行,每行$3$个整数$a$.$b$ ...

  9. [7.22NOIP模拟测试7]方程的解 题解(扩展欧几里得)

    Orz 送分比较慷慨的一道题,疯狂特判能拿不少分. 对于$a>0,b>0$的情况: 用exgcd求出方程通解,然后通过操作得到最小正整数解和最大正整数解 他们以及他们之间的解满足等差数列性 ...

随机推荐

  1. TNS-12541: TNS:no listener TNS-12560: TNS:protocol adapter error

    新建的数据库,在配置完listener的时候报这个错. 参考文章:https://community.oracle.com/message/4098938 http://blog.csdn.net/l ...

  2. Python的传值和传址与copy和deepcopy

    1.传值和传址 传值就是传入一个参数的值,传址就是传入一个参数的地址,也就是内存的地址(相当于指针).他们的区别是如果函数里面对传入的参数重新赋值,函数外的全局变量是否相应改变,用传值传入的参数是不会 ...

  3. js中的字典

    最近项目JS中需要建一个特殊的颜色库,需要用到类似C#中的dictionary的概念 然后一查发现JS没有dictionary 而是Array 初始化Array colorDic = new Arra ...

  4. css清除浮动的几种方法整理

    四种清除浮动方法如下: 1.使用空标签清除浮动.空标签可以是div标签,也可以是P 标签.这种方式是在需要清除浮动的父级元素内部的所有浮动元素后添加这样一个标签 清除浮动,并为其定义CSS代码:cle ...

  5. [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】

    题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...

  6. How to steal any developer's local database

    原文链接: http://bouk.co/blog/hacking-developers/ If you’re reading this and you’re a software developer ...

  7. webpack打包sass

    首先,需要支持sass,不管是有ruby环境的sass,还是node-sass,用npm装的sass模块,bootstrap-sass,gulp-sass..总归要有一个吧!(这里采用node-sas ...

  8. loadrunner_Controller技巧_overlay

    在scenario运行期间,我们经常有类似于:总结Vu数变化,Tps 或者response time变化的趋势或者对比response time 和 tps,那么我们就用的到 Controller的图 ...

  9. easyui源码翻译1.32--TimeSpinner(时间微调)

    前言 扩展自$.fn.spinner.defaults.使用$.fn.timespinner.defaults重写默认值对象.下载该插件翻译源码 时间微调组件的创建基于微调组件.它和数字微调类似,但是 ...

  10. 忘记commit的一次教训

    由于业务需求,已经上线的系统新增加了一些需求,其中一个需求是,从一个SQLSERVER数据库导入数据到生产的ORCLE数据库, 由于我的失误导致系统上线后 生产的Oracle数据没有导入成功,但是在本 ...