(poj) 1751 Highways
Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system. Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways. The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.
Input The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built. The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of ith town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location. The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.
Output Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space. If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.
Sample Input 9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2
Sample Output 1 6
3 7
4 9
5 7
8 3 题意:有N个点,给N个坐标,M条路,表示a和b已经连通,问还需要连通哪几个点,使所有点都连通并且路径最短 方法:开始有并查集写,但是超时了,数据太大,然后改用最小生成树写
#include <iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include <math.h>
#include<queue>
#define ll long long
#define INF 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof(a));
#define N 800
using namespace std;
int Map[N][N],dis[N];
int a[N],b[N],vis[N],s[N];
int n;
void init()///计算任意两点之间的距离 双向
{
for(int i=; i<=n; i++)
{
for(int j=i+; j<=n; j++)
Map[i][j]=Map[j][i]=((a[i]-a[j])*(a[i]-a[j])+(b[i]-b[j])*(b[i]-b[j]));
}
}
void prime(int u)
{
met(vis,);
met(dis,);
for(int i=; i<=n; i++)
{
dis[i]=Map[u][i];
s[i]=;
}
vis[u]=;
for(int i=; i<n; i++)
{
int an=INF,k;
for(int j=; j<=n; j++)
if(!vis[j] && an>dis[j])
an=dis[k=j];
if(an!=)///如果等于0 说明已经连接
{
printf("%d %d\n",s[k],k);
}
vis[k]=;
for(int j=; j<=n; j++)
{
if(!vis[j] && dis[j]>Map[k][j])
{
dis[j]=Map[k][j];
s[j]=k;///随时更改与k相连最短的点
}
}
}
}
int main()
{
int m,x,y;
while(scanf("%d",&n)!=EOF)
{
for(int i=; i<=n; i++)
{
scanf("%d %d",&a[i],&b[i]);
}
init();
scanf("%d",&m);
for(int i=; i<m; i++)
{
scanf("%d %d",&x,&y);
Map[x][y]=Map[y][x]=; }
prime();
}
return ;
}
(poj) 1751 Highways的更多相关文章
- POJ 1751 Highways (最小生成树)
Highways Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- POJ 1751 Highways (最小生成树)
Highways 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/G Description The island nation ...
- POJ 1751 Highways (kruskal)
题目链接:http://poj.org/problem?id=1751 题意是给你n个点的坐标,然后给你m对点是已经相连的,问你还需要连接哪几对点,使这个图为最小生成树. 这里用kruskal不会超时 ...
- POJ 1751 Highways (ZOJ 2048 ) MST
http://poj.org/problem?id=1751 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2048 题目大 ...
- POJ 1751 Highways 【最小生成树 Kruskal】
Highways Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23070 Accepted: 6760 Speci ...
- POJ 1751 Highways(最小生成树Prim普里姆,输出边)
题目链接:点击打开链接 Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has ...
- POJ 1751 Highways(最小生成树&Prim)题解
思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...
- (最小生成树 Prim) Highways --POJ --1751
链接: http://poj.org/problem?id=1751 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1150 ...
- H - Highways - poj 1751(prim)
某个地方政府想修建一些高速公路使他们每个乡镇都可以相同通达,不过以前已经修建过一些公路,现在要实现所有的联通,所花费的最小代价是多少?(也就是最小的修建长度),输出的是需要修的路,不过如果不需要修建就 ...
随机推荐
- 【Kafka入门】Kafka入门第一篇:基础概念篇
Kafka简介 Kafka是一个消息系统服务框架,它以提交日志的形式存储消息,并且消息的存储是分布式的,为了提供并行性和容错保障,消息的存储是分区冗余形式存在的. Kafka的架构 Kafka中包含以 ...
- POJ1502: MPI Maelstrom
红果果的dijstra算法应用,这里采用邻接表存储图 小插曲:while(scanf("%d",&n))提交时内存超限,改成while(scanf("%d&quo ...
- 互联网挣钱info
AdSense – Google 广告 http://www.freehao123.com/tag/mianfeiphpkongjian/ [免费资源部落;] ntpdate -u time-b.ti ...
- [转]JQuery判断浏览器类型版本1.9和2.0之后的区别
转至:http://zhidao.baidu.com/link?url=Nzk2aSxBKRZKYg9Evqn8hLwMyXTI-4jza-zCAZq4Vd6hWCOHIvuBX6yj8hzDYDrf ...
- 如何查看tomcat是32位还是64位
原文地址:http://www.cnblogs.com/andysd/p/3940976.html
- SSIS执行SQL任务时加入参数
昨天开发的SSIS包中,获取ERP系统parttran表时,数据量比较大,达到255万多,因为SQL执行的关系,致使处理时效率很慢,所以就想用增量更新的方法处理该表数据.这是增量更新的SQL任务集合, ...
- android httpClient 支持HTTPS的2种处理方式
摘自: http://www.kankanews.com/ICkengine/archives/9634.shtml 项目中Android https或http请求地址重定向为HTTPS的地址,相信很 ...
- RichTextBox返回值标记不同颜色
在Button按钮下,将脚本的执行结果返回到richtextbox中: 如果返回值包含“failed",则该行标记为红色 .\Scripts\升级_ERP.ps1 | % { If ($_. ...
- gitservergitlab之搭建和使用
gitserver比較有名的是gitosis和gitolite,这两个管理和使用起来略微有些复杂,没有web页面,而gitlab则是类似于github的一个工具,github无法免费建立私有仓库,而且 ...
- [Angular 2] ROUTING IN ANGULAR 2 REVISITED
Let's say we have a list of contacts, click each contact, we can render a new route to get the detai ...