Description

The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system. 

Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways. 

The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.
Input The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built. The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of ith town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location. The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.
Output Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space. If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.
Sample Input 9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2
Sample Output 1 6
3 7
4 9
5 7
8 3 题意:有N个点,给N个坐标,M条路,表示a和b已经连通,问还需要连通哪几个点,使所有点都连通并且路径最短 方法:开始有并查集写,但是超时了,数据太大,然后改用最小生成树写
 
#include <iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<vector>
#include <math.h>
#include<queue>
#define ll long long
#define INF 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof(a));
#define N 800
using namespace std;
int Map[N][N],dis[N];
int a[N],b[N],vis[N],s[N];
int n;
void init()///计算任意两点之间的距离 双向
{
for(int i=; i<=n; i++)
{
for(int j=i+; j<=n; j++)
Map[i][j]=Map[j][i]=((a[i]-a[j])*(a[i]-a[j])+(b[i]-b[j])*(b[i]-b[j]));
}
}
void prime(int u)
{
met(vis,);
met(dis,);
for(int i=; i<=n; i++)
{
dis[i]=Map[u][i];
s[i]=;
}
vis[u]=;
for(int i=; i<n; i++)
{
int an=INF,k;
for(int j=; j<=n; j++)
if(!vis[j] && an>dis[j])
an=dis[k=j];
if(an!=)///如果等于0 说明已经连接
{
printf("%d %d\n",s[k],k);
}
vis[k]=;
for(int j=; j<=n; j++)
{
if(!vis[j] && dis[j]>Map[k][j])
{
dis[j]=Map[k][j];
s[j]=k;///随时更改与k相连最短的点
}
}
}
}
int main()
{
int m,x,y;
while(scanf("%d",&n)!=EOF)
{
for(int i=; i<=n; i++)
{
scanf("%d %d",&a[i],&b[i]);
}
init();
scanf("%d",&m);
for(int i=; i<m; i++)
{
scanf("%d %d",&x,&y);
Map[x][y]=Map[y][x]=; }
prime();
}
return ;
}

(poj) 1751 Highways的更多相关文章

  1. POJ 1751 Highways (最小生成树)

    Highways Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  2. POJ 1751 Highways (最小生成树)

    Highways 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/G Description The island nation ...

  3. POJ 1751 Highways (kruskal)

    题目链接:http://poj.org/problem?id=1751 题意是给你n个点的坐标,然后给你m对点是已经相连的,问你还需要连接哪几对点,使这个图为最小生成树. 这里用kruskal不会超时 ...

  4. POJ 1751 Highways (ZOJ 2048 ) MST

    http://poj.org/problem?id=1751 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2048 题目大 ...

  5. POJ 1751 Highways 【最小生成树 Kruskal】

    Highways Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23070   Accepted: 6760   Speci ...

  6. POJ 1751 Highways(最小生成树Prim普里姆,输出边)

    题目链接:点击打开链接 Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has ...

  7. POJ 1751 Highways(最小生成树&Prim)题解

    思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...

  8. (最小生成树 Prim) Highways --POJ --1751

    链接: http://poj.org/problem?id=1751 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1150 ...

  9. H - Highways - poj 1751(prim)

    某个地方政府想修建一些高速公路使他们每个乡镇都可以相同通达,不过以前已经修建过一些公路,现在要实现所有的联通,所花费的最小代价是多少?(也就是最小的修建长度),输出的是需要修的路,不过如果不需要修建就 ...

随机推荐

  1. Eclipse创建Maven Web项目 + 测试覆盖率 + 常见问题(2015.07.14——湛耀)

    Eclipse创建Maven web项目: 到此,并没有创建好,接下来一步步解决问题: 问题:无法创建src/main/java目录 解决: 右键项目选择[properties] 点击[OK] 问题: ...

  2. HDU4737 - A Bit Fun(线段树)

    题目大意 给你一个数组a,定义f(i,j)=ai|ai+1|ai+2|⋯|aj ,|为or运算,求满足f(i,j)<m的二元组个数,N≤105,m≤230 题解 枚举起点i,然后找出最靠右的k, ...

  3. 从源码剖析一个Spark WordCount Job执行的全过程

      原文地址:http://mzorro.me/post/55c85d06e40daa9d022f3cbd   WordCount可以说是分布式数据处理框架的”Hello World”,我们可以以它为 ...

  4. sqlserver compact sdf, sqlite 数据库 在net中相对路径设置方法 - 摘自网络

    You should use: Data Source=|DataDirectory|\MyDb.sdf |DataDirectory| points to the App_Data folder. ...

  5. ubuntu下使用脚本交叉编译windows下使用的ffmpeg + X264

    这里主要是补充一些遇到的问题和解决方法. 2013-06 下旬 由于项目需要,重新编译ffmpeg+264+其他. 这里使用的环境Ubuntu 13.04,脚本依然是cross_compile_ffm ...

  6. SNMP: Simple? Network Management Protocol(转)

    转自:http://www.rane.com/note161.html An SNMP Overview The Message Format The Actual Bytes Introductio ...

  7. iOS网络编程(三) 异步加载及缓存图片---->SDWebImage

    @SDWebImage提供一个UIImageView的类别以支持加载来自网络的远程图片.具有缓存管理.异步下载.同一个URL下载次数控制和优化等特征. @SDWebImage的导入1.https:// ...

  8. 配置ModSecurity防火墙与OWASP规则

    中文译文参考:http://netsecurity.51cto.com/art/201407/446264.htm 英文原文参考:http://resources.infosecinstitute.c ...

  9. C#- WinForm获取 当前执行程序路径的几种方法

    1.获取和设置当前目录的完全限定路径.string str = System.Environment.CurrentDirectory;Result: C:xxxxxx 2.获取启动了应用程序的可执行 ...

  10. ASP.NET MVC- JSON ,Jquery, State management and Asynch controllers

    一.JSON  MVC And JQuery In case you are new to JSON please read this before moving ahead with this la ...