[PeterDLax著泛函分析习题参考解答]第3章 Hahn-Banach 定理
1. 证明 $(10'$).
证明: $\ra$: 由 $p_K(x)<1$ 知 $$\bex \exists\ 0<a<1,\st \cfrac{x}{a}\in K. \eex$$ 既然 $0$ 是 $K$ 的内点, $$\bex \forall\ y,\ \exists\ \ve=\ve(y)>0,\st |t|<\cfrac{\ve}{1-a}\ra ty\in K. \eex$$ 于是由 $K$ 的凸性, $$\bex |t|<\ve\ra x+ty =a\cdot \cfrac{x}{a} +(1-a)\cdot\sex{\cfrac{t}{1-a}y}\in K. \eex$$ $\ra$: 设 $x$ 为 $K$ 的内点. 若 $x=0$, 则 $p_K(x)=0$. 若 $x\neq 0$, 则 $$\bex \exists\ \ve=\ve(x)>0,\st |t|<\ve\ra x+tx\in K. \eex$$ 特别地, $$\bex \cfrac{x}{\cfrac{1}{1+\cfrac{\ve}{2}}}=x+\cfrac{\ve}{2}x\in K. \eex$$ 于是 $$\bex p_K(x)\leq \cfrac{1}{1+\cfrac{\ve}{2}}<1. \eex$$
2. 证明定理 4.
证明: (ii) 的证明与 (i) 类似, 而只证 (i). 设 $K=\sed{x\in X; p(x)<1}$, 则对 $\forall\ x,y\in K$, $0<a<1$, $$\beex \bea p(ax+(1-a)y)&\leq p(ax)+p((1-a)y)\\ &=ap(x)+(1-a)p(y)\\ &<a+(1-a)\\ &=a;\\ ax+(1-a)y&\in K. \eea \eeex$$ 另外, $0\in K$, 且对 $\forall\ y\neq 0$, 只要 $$\bex |t|<\min\sed{\cfrac{1}{|p(y)|+1},\cfrac{1}{|p(-y)|+1}}, \eex$$ 就有 $$\beex \bea t>0&\ra p(ty)=t\cdot p(y)<\cfrac{p(y)}{|p(y)|+1}<1,\\ t<0&\ra p(ty)=-t\cdot p(-y)<\cfrac{p(-y)}{|p(-y)|+1}<1. \eea \eeex$$
3. 证明: 若条件 (17) 改为 $p({\bf A} x)\leq p(x)$, 定理 7 仍成立.
证明: 检查定理 7 的证明即知结论成立.
错误指出:
Page 19, 定理 5 第 2 行, 数域应该去掉.
[PeterDLax著泛函分析习题参考解答]第3章 Hahn-Banach 定理的更多相关文章
- [PeterDLax著泛函分析习题参考解答]第2章 线性映射
1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...
- [PeterDLax著泛函分析习题参考解答]第1章 线性空间
1. 证明定理 1. 2. 验证上述结论. 3. 证明定理 3. 4. 证明定理 4. 证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1} ...
- [PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间
1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen ...
- [PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间
1. (a) 证明 (6) 定义了范数. (b) 证明它们在 (5) 式意义下是等价的. 证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z ...
- [PeterDLax著泛函分析习题参考解答]第7章 Hilbert 空间结果的应用
1. 对测度是 $\sigma$ 有限的情形证明 Radon-Nikodym 定理. 证明: 设 $\mu,\nu$ 均为 $\sigma$ 有限的非负测度, 则存在分割 $$\bex X=\cup_ ...
- [PeterDLax著泛函分析习题参考解答]第4章 Hahn-Bananch 定理的应用
1. 证明: 若在 4.1 节中取 $S=\sed{\mbox{正整数}}$, $Y$ 是收敛数列构成的空间, $\ell$ 由 (14) 式定义, 则由 (4) 给出的 $p$ 和由 (11) 定义 ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
随机推荐
- Multiple methods named 'status' found with mismatched result, parameter type or attributes
出现这个这个错误, 有可能是由于你直接通过一个数组的索引获取一个对象(或模型)然后直接调用这个对象(或模型)的某个方法 例如: NSString *status = [self.models[inde ...
- html-----015---HTML ASCII 参考手册
HTML 和 XHTML 用标准的 7 比特 ASCII 代码在网络上传输数据. 7 比特 ASCII 代码可提供 128 个不同的字符值. 7 比特 可显示的 ASCII 代码 <html&g ...
- MFC Tips(一) 在程序内部 保存读取配置
//保存 CWinApp *pApp = AfxGetApp(); pApp->WriteProfileBinary(..); //保存结构体 pApp->WriteProfileInt( ...
- dapper的一个小扩展以支持dataset
废话不多,直接上方法 public static DataSet ExecuteDataSet(this IDbConnection cnn, IDbDataAdapter adapter, stri ...
- Java 编译解释
JDK提供的主要开发工具有:编译程序,解释执行程序.调试程序.Applet执行程序.文档管理程序.包管理程序等. 1.编译程序:javac.exe,对应的javac命令将Java源程序转换为字节码. ...
- maven使用之烦人的.lastUpdated文件
项目使用maven管理jar包,很容易因为各种原因(网速慢.断网)导致jar包下载不下来,出现很多.lastUpdated文件.这些文件一个一个删除太麻烦.下面是全部删除的方法 windows系统 c ...
- 数位DP入门Ural1057
CF一战让我觉得很疲倦,所以今天感觉很慢. 昨天解D题时候,因为太累,根本连题目都没看,今天看了之后感觉不会做,听闻是数位DP问题. 有某神说过,DP的功力建立在刷过的题上,我真的毫无功力可言. 介绍 ...
- 检查mysql数据库是否存在坏表脚本
#!/bin/bash #此脚本的主要用途是检测mysql服务器上所有的db或者单独db中的坏表 #变量说明 pass mysql账户口令 name mysql账号名称 data_path mysql ...
- JavaScript实现url地址自动检测并添加URL链接示例代码
写一个简单的聊天系统,发出Htpp的Url实现跳转加上a标签,下面是具体的实现,感兴趣的朋友不要错过 背景:写一个简单的聊天系统,发出Htpp的Url实现跳转加上a标签. 实现代码: 复制代码代码如 ...
- TDirectory.Move移动或更名目录
使用函数: System.IOUtils.TDirectory.Move 定义: class procedure Move(const SourceDirName, DestDirName: stri ...