一个常用的结论(方法)

只要知道gcd(i,n)=L 的i的个数s,我们就能很轻易得出答案

gcd(i,n)=L

gcd(i/L,n/L)=1

不难得到这样的s=与n/L互质的个数=phi(n/L)

一个数的欧拉函数最坏情况是可以在O(sqrt(n))的复杂度中弄出来的

我们可以穷举L,只要从1穷举到根号n即可

 var i:longint;
    ans,n:int64; function phi(x:int64):int64;
  var i:longint;
  begin
    phi:=;
    for i:= to trunc(sqrt(n)) do
      if x mod i= then
      begin
        phi:=phi*(i-);
        x:=x div i;
        while x mod i= do
        begin
          x:=x div i;
          phi:=phi*i;
        end;
        if x= then break;
      end;
    if x> then phi:=phi*(x-);
  end; begin
  readln(n);
  for i:= to trunc(sqrt(n)) do
    if n mod i= then
    begin
      ans:=ans+phi(n div i)*i;
      if i<>n div i then ans:=ans+phi(i)*(n div i);
    end;
  writeln(ans);
end.

bzoj2705的更多相关文章

  1. 【bzoj2705】 SDOI2012—Longge的问题

    http://www.lydsy.com/JudgeOnline/problem.php?id=2705 (题目链接) 题意 给定一个整数N,你需要求出∑gcd(i, N)(1<=i <= ...

  2. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  3. [BZOJ2190&BZOJ2705]欧拉函数应用两例

    欧拉函数phi[n]是表示1~n中与n互质的数个数. 可以用公式phi[n]=n*(1-1/p1)*(1-1/p2)*(1-1/p3)...*(1-1/pk)来表示.(p为n的质因子) 求phi[p] ...

  4. BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  5. Bzoj2705 Longge的问题

    Time Limit: 3000MS   Memory Limit: 131072KB   64bit IO Format: %lld & %llu Description Longge的数学 ...

  6. Bzoj-2705 Longge的问题 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 题意: 求 sigma(gcd(i,n), 1<=i<=n<2^3 ...

  7. 【BZOJ2705】【Sdoi2012】Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出\(\Sigma gcd(i, N) (1 \leq i \leq N ...

  8. 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N).   Solut ...

  9. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

随机推荐

  1. 转:四种方案解决ScrollView嵌套ListView问题

    转载自:http://blog.sina.com.cn/s/blog_46798aa80101lxbk.html 原始的连接已经不知道是哪里了,项目中遇到了同样的问题,花了一下午都没有想到是嵌套引起的 ...

  2. WPF-TxtBox控件利用KeyDown来控制键盘输入

    private void TextBox_PreviewKeyDown(object sender, KeyEventArgs e)        {            TextBox txt = ...

  3. 淘宝开源Web服务器Tengine安装教程

    简介Tengine是由淘宝核心系统部基于Nginx开发的Web服务器,它在Nginx的基础上,针对大访问量网站的需求,添加了很多功能和特性.Tengine的性能和稳定性已经在大型的网站如淘宝网,淘宝商 ...

  4. 一个fibonacci数列简单求和的问题

    前段时间老师在讲函数调用的时候,用Fibonacci数列来演示了一下,因为以前没怎么接触过Fibonacci,所以当时很懵. 当时让求的是Fibonacci数列中,第N位值为多少,当时老师写的是: 之 ...

  5. thinkphp 自定义标签

    关于标签的个人理解是 拼凑php 字符串 通过eval()来进行,返回数据.过程应该是这样的,在模板中加入 定义标签为<mytag:list></mytag>,那么在mvc 中 ...

  6. UVA 11995 I Can Guess the Data Structure!(ADT)

    I Can Guess the Data Structure! There is a bag-like data structure, supporting two operations: 1 x T ...

  7. fork();

    僵死进程: 父进程没有等待子进程,wait() 子进程会变成僵死进程. int main(int arg, char *args[]){ pid_t pid = fork();//调用fork产生一个 ...

  8. 计算字符串和文件的MD5值

    //计算字符串的MD5值 public string GetMD5(string sDataIn) { MD5CryptoServiceProvider md5 = new MD5CryptoServ ...

  9. H5小内容(一)

    HTML5目前最新的规范(标准)是2014年10月推出   2005年左右出现HTML5版本(非标准)     W3C组织(两个组织定义H5规范)   学习(研究)HTML5是学习未来(将来主流)   ...

  10. Log4j 密码屏蔽

    Log4j filter to mask Payment Card numbers (PCI DSS) According to PCI DSS (Payment Card Industry Data ...