1013: [JSOI2008]球形空间产生器sphere

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 3584  Solved: 1863
[Submit][Status][Discuss]

Description

有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。

Output

有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

数据规模:

对于40%的数据,1<=n<=3

对于100%的数据,1<=n<=10

提示:给出两个定义:

1、 球心:到球面上任意一点距离都相等的点。

2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )

Source

【思路】

高斯消元

列方程:设两点坐标为a[],b[],且x[]为球心坐标。则满足:

每两个相邻点满足该式即可保证x为球心,所以只需要解n个方程。

然后高斯消元解方程即可。

【代码】

 #include<cstdio>
#include<cmath>
#include<iostream>
using namespace std; typedef double dl;
const int N = ; dl A[N][N],a[N][N];
int n; void gause() {
int i,j,k,r;
for(i=;i<n;i++) { //消元
r=i;
for(j=i+;j<n;j++)
if(fabs(A[j][i])>fabs(A[r][i])) r=j;
if(r!=i) for(j=;j<=n;j++) swap(A[r][j],A[i][j]);
for(j=n;j>=i;j--) //使A[k][i]为0
for(k=i+;k<n;k++)
A[k][j]-=A[k][i]/A[i][i]*A[i][j];
}
for(i=n-;i>=;i--) { //回代
for(j=i+;j<n;j++)
A[i][n]-=A[j][n]*A[i][j];
A[i][n]/=A[i][i];
}
} int main() {
scanf("%d",&n);
for(int i=;i<=n;i++) for(int j=;j<n;j++)
scanf("%lf",&a[i][j]);
for(int i=;i<n;i++) { //构造方程组
for(int j=;j<n;j++) A[i][j]=*(a[i+][j]-a[i][j]);
for(int j=;j<n;j++) A[i][n]+=a[i+][j]*a[i+][j]-a[i][j]*a[i][j];
}
gause();
printf("%.3lf",A[][n]);
for(int i=;i<n;i++) printf(" %.3lf",A[i][n]);
return ;
}

bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)的更多相关文章

  1. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  2. lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

    题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内 ...

  3. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  4. BZOJ 1013 [JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3074  Solved: 1614[Subm ...

  5. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  6. 【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  7. 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题

    最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...

  8. bzoj 1013: [JSOI2008]球形空间产生器sphere【高斯消元】

    n+1个坐标可以列出n个方程,以二维为例,设圆心为(x,y),给出三个点分别是(a1,b1),(a2,b2),(a3,b3) 因为圆上各点到圆心的距离相同,于是可以列出距离方程 \[ (a1-x)^2 ...

  9. BZOJ 1013 球形空间产生器sphere 高斯消元

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...

随机推荐

  1. Scoket简介

    我们很多人都听说过Socket编程也称网络编程,在我们当今的社会中网络已经深入到我们的生活中了,计算机的网络通信也成为我们生活中必不可少的一部分.而实现我们网络通信就得依靠网络编程,让我们的计算机之间 ...

  2. Sqlserver 列转行 行转列

    sqlserver的行转列 列转行问题 行转列:1 使用Case when 方式 CREATE TABLE [StudentScores]( [UserName] NVARCHAR(20), --学生 ...

  3. AngularJS code converage

    karma-coverage The easiest way is to keep karma-coverage as a devDependency in your package.json. Mo ...

  4. jquery 移除数组重复的元素----$.unique()

    举例说明: var  fruits=["apple","banana","pear","orange","ba ...

  5. P次方数 英雄会 csdn 高校俱乐部

    题目: 一个整数N,|N| >= 2, 如果存在整数x,使得N = x * x * x... (p个x相乘) =x^p,则称N是p次方数,给定32位内的整数N,求最大的P.例如N=5,输出1,N ...

  6. c++primerplus(第六版)编程题——第4章(复合类型)

    声明:作者为了调试方便,每一章的程序写在一个工程文件中,每一道编程练习题新建一个独立文件,在主函数中调用,我建议同我一样的初学者可以采用这种方式,调试起来会比较方便. (具体方式参见第3章模板) 1. ...

  7. 《VTL语法参考指南》中文版[转]

    转自:http://blog.csdn.net/javafound/archive/2007/05/14/1607935.aspx <VTL语法参考指南>中文版 源文见 http://ve ...

  8. DevExpress 控件使用之XtraReport

    DevExpress 系列控件,相信大家做WinForm开发已经再熟悉不过了.报表工具对大家来说,选择面很广,.net 本身也提供了非常好的设计工具.下面主要介绍通过DevExpress XtraRe ...

  9. 零售ERP开发(一)

    随着企业信息化不断提高,各种企业管理系统应用而生:怎么才能开发一套简洁.易用.功能健全的管理系统,尤其是能够帮助企业做出重大策略的系统,一致是我们追求的目标.近些年,接触的Erp系统主要包括国内比较知 ...

  10. 用三或四个个div标签实现工字效果

    使用重构的方式制作出一个如下图的水平.垂直都居中,短边为50px,长边为150px的红色“工”字. a) 使用3个div完成 <!DOCTYPE html><html lang=&q ...