题意

在一个星球(是一个球体)表面有一个飞机(坐标(x1,y1,z1),原点是星球中心),在空中有一个空间站(坐标(x2,y2,z2)),所有值均小于100,现在要使飞机与空间站相遇,飞机的速度是1,空间站速度是v,v是小于等于100的整数。飞机只能沿星球表面飞,而空间站可以任意飞,当然不能进入星球内部。

【解答】

首先可以把三维图形转化为二维的,也就是飞机,空间站,原点确定的那一个平面,

为什么是含原点的平面?我们不妨把球体旋转一下,把飞机的初始位置固定在球体的最上边,空间站在球的侧边的上空,显然只有沿过原点平面的路线是最短的。

现在能确定三个参量,飞机(设为点A)的高度p,空间站(设为点B)的高度q,以及飞机原点的直线,空间站原点的直线的夹角(角AOB)

求夹角可以用点积 p*q = |p|*|q|*cos<p,q>

注意用叉积=|p|*|q|*sin<p,q>是不推荐的,因为使用asin()函数求角度时,它不可能返回大于pi/2的角度(可以联系反三角函数图像),使用acos()则不会出现这种问题。【差错了三个小时发现是跪在了这里Σ(っ °Д °;)っ 】

现在可以转化为二维图了

我们不妨设空间站在x轴上,飞机在x轴上方,因为夹角一定小于180度,所以飞机在x轴上方或者下方是等价的。我们假设在x轴上方。

这样成功转化为容易对其思考的二维图形

下面就是如何选择相遇点的问题,假设相遇在第一个A1到C点之间,那么空间站一定是先沿圆的切线BC走,再沿弧CA1走,

一开始想并不是沿弧走,而是沿折现走,比如说下边这个图

沿ACE走,显然走ABDE更要近一些(三角形一边比另外两边和要短),以此类推,还是走弧最近。

假设相遇点在A2处,那么空间站B就沿之间走到A2,飞船A就沿弧走到A2即可。

寻找相遇点可以使用二分,但发现相遇点从A到D(圆与x轴正半轴交点),花费时间可能是先见减后增的,所以需要三分找时间最小值。

三分的框架:

while (l<r)
{
m1=l+(r-l)/;
m2=r-(r-l)/;
if(find(m1)<find(m2)) r=m2;
else l=m1;
}

当然也可以二分时间,这样就可以避免三分了。

程序代码:

#include <iostream>
#include <iomanip>
#include <fstream>
#include <stdlib.h>
#include <time.h>
#include<cstring>
#include<cstdio>
#include<vector>
#include<string>
#include<algorithm>
#include <limits.h>
#include<cmath>
#include<map>
#include<queue>
#include<set>
using namespace std; typedef long long LL;
int i,j,k,n,m,x,y,T,ans,big,cas,num,len;
bool flag; double ms,sp,fl,si,m1,m2,lenp,lenq,l,r,t1,t2;
int v;
struct node
{
double x,y,z;
}p,q,s; double leng(node r)
{
return sqrt(r.x*r.x+r.y*r.y+r.z*r.z);
} double sz(double x,double y)
{
return sqrt(x*x+y*y);
} double getime(double m)
{
if (m<=ms)
{
sp=sz(lenp*sin(m),lenq-lenp*cos(m)) /v;
fl=(si-m)*lenp;
return max(sp,fl);
}else
{
fl=(si-m)*lenp;
sp=(sz(lenp*sin(ms),lenq-lenp*cos(ms)) + (m-ms)*lenp )/v;
return max(fl,sp);
}
} int main()
{
scanf("%lf%lf%lf",&p.x,&p.y,&p.z);
scanf("%lf%lf%lf",&q.x,&q.y,&q.z);
scanf("%d",&v); s.x=p.x*q.x;
s.y=p.y*q.y;
s.z=p.z*q.z; lenp=leng(p);
lenq=leng(q);
si=acos((s.x+s.y+s.z)/lenp/lenq);
ms=acos(lenp/lenq);
l=;
r=si;
while (r-l>=1e-)
{
m1=(r+*l)/;
m2=(*r+l)/;
t1=getime(m1);
t2=getime(m2); if (t1>t2) l=m1; else r=m2;
} printf("%.6lf\n",getime(l)); return ;
}

URAL 1988 - Planet Ocean Landing【几何&三分答案】的更多相关文章

  1. poj 3301 Texas Trip(几何+三分)

    Description After a day trip with his friend Dick, Harry noticed a strange pattern of tiny holes in ...

  2. hdu 2438 Turn the corner(几何+三分)

    Problem Description Mr. West bought a new car! So he is travelling around the city. One day he comes ...

  3. 【BZOJ】3203: [Sdoi2013]保护出题人(几何+三分+特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3203 wa无数次QAQ,犯sb错....一是数组没有引用...二是输出转成了int(越界了sad). ...

  4. hdu3756三分基础题

    Dome of Circus Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. 【三分】light bulb(zoj3203)

    题目描述: 如图,你可以在房间里移动,灯泡的高度为H,你的身高为h,灯泡与墙的水平距离为D,求你影子的最长长度(影子长度=地上影子长度+墙上影子长度) 样例输入: 0.5 样例输出: 1.000 0. ...

  6. XMU 1125 越野车大赛 【三分】

    1125: 越野车大赛 Time Limit: 500 MS  Memory Limit: 64 MB  Special JudgeSubmit: 8  Solved: 4[Submit][Statu ...

  7. 洛谷 P3382 【模板】三分法(三分 二分)

    P3382 [模板]三分法 题目提供者HansBug 难度 普及/提高- 题目描述 如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减.试求出x的值. ...

  8. Hihocoder #1142 : 三分·三分求极值

    1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个 ...

  9. C++-HDU3400-Line belt[三分]

    将军饮马问题的升级版 二维平面中要从A到D,给出两条线段AB,CD,分别在线段AB,CD,以及空白处的速度为P,Q,R 求最少用时 由于最优位置满足“凸性”,且两条线段可以等价,所以可以采取三分答案迭 ...

随机推荐

  1. Rails中的测试RSpec升级遇到的问题

    bundle exec rspec spec/ /home/wuxj/Prac/rrprac/sample_app/spec/spec_helper.rb::in `block in <top ...

  2. Altium Designer 定义板子外框

    Altium Designer 提供多种定义板子外形的方法. 第一种方法,在Files 面板(在界面下面System菜单条中查找)中选择PCB Templates命令.在这个界面下您可以选择符合您设计 ...

  3. Spring MVC 解读——@RequestMapping (2)(转)

    转自:http://my.oschina.net/HeliosFly/blog/214438 Spring MVC 解读——@RequestMapping 上一篇文章中我们了解了Spring如何处理@ ...

  4. EditText的 焦点事件 setOnFocusChangeListener

    实现代码: //光标处在EditText时其内容消失 mInfo = (EditText)findViewById(R.id.old_password); //setOnFocusChangeList ...

  5. Android开源项目发现--- 安全篇(持续更新)

    SQLCipher Sqlite加密工具 项目地址:https://github.com/sqlcipher/sqlcipher 帮助文档:http://sqlcipher.net/sqlcipher ...

  6. 【HDOJ】1043 Eight

    这道题目最开始做的时候wa+TLE.后面知道需要状态压缩,最近A掉.并且练习一下各种搜索算法. 1. 逆向BFS+康拓展开. #include <iostream> #include &l ...

  7. bzoj3790

    观察发现,这道题目其实就相当于一个最小区间覆盖问题这里的区间是指以每个点为中心的最长回文串很久没写manacher,有点感动不得不说manacher是一个非常好的算法 ..] of char; c,l ...

  8. 导航软件 CH Round #57 - Story of the OI Class

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2357%20-%20Story%20of%20the%20OI%20Class/导航软件 题解:刚开始看见题目, ...

  9. position: absolute 的元素自动对齐父元素 border 外边缘

    Position with border outer edge CSS box-flex align-items justify-content

  10. 【转】模拟器上安装googleplay apk

    原文网址:http://blog.sina.com.cn/s/blog_9fc2ff230101gv57.html 1.进入到sdk\android-sdk-windows\tools>目录下: ...