【算法】区间DP

【题意】平面上有n个点(xi,yi),用最少个数的底边在x轴上且面积为S的矩形覆盖这些点(在边界上也算覆盖),n<=100。

【题解】随机大数据下,贪心几乎没有错误,贪心出奇迹啊!

f[i][j][h]表示区间i~j高度>=h的点全部被覆盖的最少矩形。

首先离散化横纵坐标,然后初始化每个f[i][i],然后进行区间DP(顺次枚举区间长度,左端点,高度从大到小)转移如下。

f[i][j][h]=min(f[i][j][h],f[i][x][h]+f[x+1][j][h]),x=i~j-1

h2=s/(x[j]-x[i])(注意离散化)

f[i][j][h]=min(f[i][j][h],f[i][j][h2+1]+1)

为什么这样转移是正确的?

考虑一个区间内情况,有以下两种选择:

1.分成两个区间各自摆矩形并列。

2.在整个区间设置打矩形,则h2部分另外处理。

其它情况?直接在区间摆大矩形覆盖全部等价于第二种情况,大区间h之上只有小区间的点等价于第一种情况,所以一共只有两种情况。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#include<algorithm>
#define ll long long
using namespace std;
int read()
{
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
/*------------------------------------------------------------*/
const int inf=0x3f3f3f3f,maxn=;
struct cyc{int x,y;}a[maxn],b[maxn],c[maxn];
int n,f[maxn][maxn][maxn],ynum[maxn],tot,s;
bool cmp(cyc a,cyc b)
{return a.x<b.x||(a.x==b.x&&a.y>b.y);}
int main()
{
scanf("%d%d",&n,&s);
for(int i=;i<=n;i++){
a[i].x=read();
a[i].y=read();
}
sort(a+,a+n+,cmp);
int totx=;
c[totx]=a[];
for(int i=;i<=n;i++)if(a[i].x!=a[i-].x)c[++totx]=a[i];
tot=n=totx;
for(int i=;i<=n;i++)a[i]=c[i];
for(int i=;i<=n;i++)ynum[i]=a[i].y;
sort(ynum+,ynum+tot+);
tot=unique(ynum+,ynum+tot+)-ynum-;
for(int i=;i<=n;i++){b[i].x=i;b[i].y=lower_bound(ynum+,ynum+tot+,a[i].y)-ynum;}
ynum[++tot]=inf;
memset(f,0x3f,sizeof(f));
for(int i=;i<=n;i++){for(int k=tot;k>b[i].y;k--)f[i][i][k]=;for(int k=b[i].y;k>=;k--)f[i][i][k]=;}
for(int p=;p<=n;p++){
for(int i=;i+p-<=n;i++){
int j=i+p-;
for(int h=tot;h>=;h--){
for(int x=i;x<j;x++)f[i][j][h]=min(f[i][j][h],f[i][x][h]+f[x+][j][h]);
int h2=lower_bound(ynum+,ynum+tot+,s/(a[j].x-a[i].x))-ynum;
if(ynum[h2]==s/(a[j].x-a[i].x))h2++;
f[i][j][h]=min(f[i][j][h],f[i][j][h2]+);
}
}
}
printf("%d",f[][n][]);
return ;
}

【STSRM10】dp只会看规律的更多相关文章

  1. 汕头市队赛 SRM10 dp只会看规律 && bzoj1766

    dp只会看规律 SRM 10 描述 平面上有n个点(xi,yi),用最少个数的底边在x轴上且面积为S的矩形覆盖这些点(在边界上也算覆盖) 输入格式 第一行两个整数n,S接下来n行每行两个整数xi,yi ...

  2. [LOJ#516]「LibreOJ β Round #2」DP 一般看规律

    [LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...

  3. LibreOJ #516. 「LibreOJ β Round #2」DP 一般看规律

    二次联通门 : LibreOJ #516. 「LibreOJ β Round #2」DP 一般看规律 /* LibreOJ #516. 「LibreOJ β Round #2」DP 一般看规律 set ...

  4. Pycharm新手教程,只需要看这篇就够了

    pycharm是一款高效的python IDE工具,它非常强大,且可以跨平台,是新手首选工具!下面我给第一次使用这款软件的朋友做一个简单的使用教程,希望能给你带来帮助! 目前pycharm一共有两个版 ...

  5. 2018.10.14 loj#516. DP 一般看规律(启发式合并)

    传送门 注意到一种颜色改了之后就不能改回去了. 因此可以启发式合并. 每次把小的合并给大的. 这样每个数最多被合并logloglog次. 如果维护一棵比较下标的平衡树的话,对于答案有贡献的就是每个数与 ...

  6. loj516 「LibreOJ β Round #2」DP 一般看规律

    传送门:https://loj.ac/problem/516 [题解] 那段代码求的是相同的数中间隔最小的值. 离散后用set维护每个值出现次数,每次操作相当于合并两个set,这步可以启发式合并. 加 ...

  7. 「LibreOJ#516」DP 一般看规律

    首先对于序列上一点,它对答案的贡献只有与它的前驱和后驱(前提颜色相同)构成的点对, 于是想到用set维护每个颜色,修改操作就是将2个set暴力合并(小的向大的合并),每次插入时更新答案即可 颜色数要离 ...

  8. loj516 DP一般看规律(set启发式合并)

    题目: https://loj.ac/problem/516 分析: 每次将一个颜色更改为另一个颜色相当于将两个集合合并 然后对于答案的更新,一个点插入到一个集合中,那么可能更新答案的就是其前驱节点或 ...

  9. HDU 4588 Count The Carries 数位DP || 打表找规律

    2013年南京邀请赛的铜牌题...做的非常是伤心.另外有两个不太好想到的地方.. ..a 能够等于零,另外a到b的累加和比較大.大约在2^70左右. 首先说一下解题思路. 首先统计出每一位的1的个数, ...

随机推荐

  1. android AndroidManifest.xml uses-feature 详解

    如果你是一个Android用户,而且你有一个老旧的安装有android 1.5 的android设备,你可 能会注意到一些高版本的应用没有在手机上的Android Market 中显示.这必定是应用使 ...

  2. 【alpha】Scrum站立会议第2次....10.17

    小组名称:nice! 小组成员:李权 于淼 杨柳 刘芳芳 项目内容:约跑app 1.任务进度 成员 已完成 今日完成 李权 数据库设计 消息发送代码实现 于淼 注册.登录界面,以及登录界面后台代码.发 ...

  3. 用glob()函数返回目录下的子文件以及子目录

    glob() 函数返回匹配指定模式的文件名或目录 相对于readdir()和opendir()来说,使用glob()函数会方便很多 代码1: <?php function getfilename ...

  4. nginx的平滑升级,不间断服务

    nginx的平滑升级,不间断服务   Nginx更新真的很快,最近nginx的1.0.5稳定版,nginx的0.8.55和nginx的0.7.69旧的稳定版本已经发布.我一项比较喜欢使用新版本的软件, ...

  5. 【转】关于增量链接(incremental linking)

    增量链接(Incremental Linking)这个词语在使用Visual C++时经常会遇到(其实不只是VS系列,其它链接器也有这个特性), 就比如经常遇到的:上一个增量链接没有生成它, 正在执行 ...

  6. html超出不自动换行

    1.使用overflow: hidden把超出的内容进行隐藏: 2.然后使用white-space: nowrap设置内容不换行: 3.最后使用text-overflow: ellipsis设置超出内 ...

  7. [剑指Offer] 48.不用加减乘除做加法

    题目描述 写一个函数,求两个整数之和,要求在函数体内不得使用+.-.*./四则运算符号. [思路] 首先看十进制是如何做的: 5+7=12,三步走第一步:相加各位的值,不算进位,得到2.第二步:计算进 ...

  8. delphi怎样单步调试

    在delphi的IDE编辑窗口里,主菜单->Run->Step Over或者主菜单->Run->Trace Into单步调试有两种方式:一种是Step Over,快捷键是F8, ...

  9. java 中 Stringbuff append源代码浅析

    public synchronized StringBuffer append(String str) {        super.append(str);        return this;  ...

  10. BZOJ4709 JSOI2011柠檬(动态规划)

    首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...