【算法】区间DP

【题意】平面上有n个点(xi,yi),用最少个数的底边在x轴上且面积为S的矩形覆盖这些点(在边界上也算覆盖),n<=100。

【题解】随机大数据下,贪心几乎没有错误,贪心出奇迹啊!

f[i][j][h]表示区间i~j高度>=h的点全部被覆盖的最少矩形。

首先离散化横纵坐标,然后初始化每个f[i][i],然后进行区间DP(顺次枚举区间长度,左端点,高度从大到小)转移如下。

f[i][j][h]=min(f[i][j][h],f[i][x][h]+f[x+1][j][h]),x=i~j-1

h2=s/(x[j]-x[i])(注意离散化)

f[i][j][h]=min(f[i][j][h],f[i][j][h2+1]+1)

为什么这样转移是正确的?

考虑一个区间内情况,有以下两种选择:

1.分成两个区间各自摆矩形并列。

2.在整个区间设置打矩形,则h2部分另外处理。

其它情况?直接在区间摆大矩形覆盖全部等价于第二种情况,大区间h之上只有小区间的点等价于第一种情况,所以一共只有两种情况。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#include<algorithm>
#define ll long long
using namespace std;
int read()
{
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
/*------------------------------------------------------------*/
const int inf=0x3f3f3f3f,maxn=;
struct cyc{int x,y;}a[maxn],b[maxn],c[maxn];
int n,f[maxn][maxn][maxn],ynum[maxn],tot,s;
bool cmp(cyc a,cyc b)
{return a.x<b.x||(a.x==b.x&&a.y>b.y);}
int main()
{
scanf("%d%d",&n,&s);
for(int i=;i<=n;i++){
a[i].x=read();
a[i].y=read();
}
sort(a+,a+n+,cmp);
int totx=;
c[totx]=a[];
for(int i=;i<=n;i++)if(a[i].x!=a[i-].x)c[++totx]=a[i];
tot=n=totx;
for(int i=;i<=n;i++)a[i]=c[i];
for(int i=;i<=n;i++)ynum[i]=a[i].y;
sort(ynum+,ynum+tot+);
tot=unique(ynum+,ynum+tot+)-ynum-;
for(int i=;i<=n;i++){b[i].x=i;b[i].y=lower_bound(ynum+,ynum+tot+,a[i].y)-ynum;}
ynum[++tot]=inf;
memset(f,0x3f,sizeof(f));
for(int i=;i<=n;i++){for(int k=tot;k>b[i].y;k--)f[i][i][k]=;for(int k=b[i].y;k>=;k--)f[i][i][k]=;}
for(int p=;p<=n;p++){
for(int i=;i+p-<=n;i++){
int j=i+p-;
for(int h=tot;h>=;h--){
for(int x=i;x<j;x++)f[i][j][h]=min(f[i][j][h],f[i][x][h]+f[x+][j][h]);
int h2=lower_bound(ynum+,ynum+tot+,s/(a[j].x-a[i].x))-ynum;
if(ynum[h2]==s/(a[j].x-a[i].x))h2++;
f[i][j][h]=min(f[i][j][h],f[i][j][h2]+);
}
}
}
printf("%d",f[][n][]);
return ;
}

【STSRM10】dp只会看规律的更多相关文章

  1. 汕头市队赛 SRM10 dp只会看规律 && bzoj1766

    dp只会看规律 SRM 10 描述 平面上有n个点(xi,yi),用最少个数的底边在x轴上且面积为S的矩形覆盖这些点(在边界上也算覆盖) 输入格式 第一行两个整数n,S接下来n行每行两个整数xi,yi ...

  2. [LOJ#516]「LibreOJ β Round #2」DP 一般看规律

    [LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...

  3. LibreOJ #516. 「LibreOJ β Round #2」DP 一般看规律

    二次联通门 : LibreOJ #516. 「LibreOJ β Round #2」DP 一般看规律 /* LibreOJ #516. 「LibreOJ β Round #2」DP 一般看规律 set ...

  4. Pycharm新手教程,只需要看这篇就够了

    pycharm是一款高效的python IDE工具,它非常强大,且可以跨平台,是新手首选工具!下面我给第一次使用这款软件的朋友做一个简单的使用教程,希望能给你带来帮助! 目前pycharm一共有两个版 ...

  5. 2018.10.14 loj#516. DP 一般看规律(启发式合并)

    传送门 注意到一种颜色改了之后就不能改回去了. 因此可以启发式合并. 每次把小的合并给大的. 这样每个数最多被合并logloglog次. 如果维护一棵比较下标的平衡树的话,对于答案有贡献的就是每个数与 ...

  6. loj516 「LibreOJ β Round #2」DP 一般看规律

    传送门:https://loj.ac/problem/516 [题解] 那段代码求的是相同的数中间隔最小的值. 离散后用set维护每个值出现次数,每次操作相当于合并两个set,这步可以启发式合并. 加 ...

  7. 「LibreOJ#516」DP 一般看规律

    首先对于序列上一点,它对答案的贡献只有与它的前驱和后驱(前提颜色相同)构成的点对, 于是想到用set维护每个颜色,修改操作就是将2个set暴力合并(小的向大的合并),每次插入时更新答案即可 颜色数要离 ...

  8. loj516 DP一般看规律(set启发式合并)

    题目: https://loj.ac/problem/516 分析: 每次将一个颜色更改为另一个颜色相当于将两个集合合并 然后对于答案的更新,一个点插入到一个集合中,那么可能更新答案的就是其前驱节点或 ...

  9. HDU 4588 Count The Carries 数位DP || 打表找规律

    2013年南京邀请赛的铜牌题...做的非常是伤心.另外有两个不太好想到的地方.. ..a 能够等于零,另外a到b的累加和比較大.大约在2^70左右. 首先说一下解题思路. 首先统计出每一位的1的个数, ...

随机推荐

  1. 最长回文子串计算(fail)

    题意: 给定一个字符串s,在s中找到最长的回文子字符串.您可以假设s的最大长度为1000. 例子: 输入: “babad” 输出: “bab” 注: “aba”也是一个有效的答案. 我的答案: 想法: ...

  2. 【week2】 构建之法 读后感及问题

    上一次读后感涵盖前五章的内容包括个人技术,结对合作,小组项目等.本周作业的燃尽图以及站立会议是关于<构建之法>第六章的内容,所以关于这一章的读后感涵盖在上两篇博客中. 第七章 MSF 介绍 ...

  3. Winform 数据绑定

    1.DataGridView数据绑定 namespace WindowsFormsApplication1 { public partial class Form1 : Form { private ...

  4. SQL SERVER技术内幕之7 透视与逆透视

    1.透视转换 透视数据(pivoting)是一种把数据从行的状态旋转为列的状态的处理,在这个过程中可能须要对值进行聚合. 每个透视转换将涉及三个逻辑处理阶段,每个阶段都有相关的元素:分组阶段处理相关的 ...

  5. 【python】windows7下怎样安装whl

    windows7 python2.7 1.用管理员方式打开cmd 2.首先通过pip命令安装wheel 如果提示’pip’不是内部或外部命令,也不是可运行的程序或批处理文件 ①将python安装目录下 ...

  6. nargout 【转】

    Matlab中nargout介绍 功能:在matlab中定义一个函数时,在函数体内部,nargout指出了输出参数的个数(nargin指出了输入参数的个数).特别是在利用了可变参数列表的函数中,用na ...

  7. BZOJ 1076 奖励关(状压期望DP)

    当前得分期望=(上一轮得分期望+这一轮得分)/m dp[i,j]:第i轮拿的物品方案为j的最优得分期望 如果我们正着去做,会出现从不合法状态(比如前i个根本无法达到j这种方案),所以从后向前推 如果当 ...

  8. java动态代理(JDK和CGLIB)笔记

    动态代理:为一堆interface或类的实现提供统一的执行通道,从含义上就像局域网电脑通过代理上网一样,走统一的通道,代理控制通道,自然可以在通道里加上自定义实现,例如像AOP切面,日志等. JDK的 ...

  9. 在@Async注解下RequestContextHolder.getRequestAttributes() 获得null的情况

    我们有的时候会在service层获取request填充一些诸如用户名和IP地址等信息,这个时候如果不想从Controller层传request,可以在service直接使用 HttpServletRe ...

  10. 阿里云学生机——Mysql配置---教小白入门篇

    首先,我的学生机默认配置为:CentOS 7.2 64位 + Tomcat 8 + Jdk8 + MySQL5.7.16 扩展:Linux 如何查看 MySQL 版本号----使用命令 mysql - ...