Bridge Across Islands
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7202   Accepted: 2113   Special Judge

Description

Thousands of thousands years ago there was a small kingdom located in the middle of the Pacific Ocean. The territory of the kingdom consists two separated islands. Due to the impact of the ocean current, the shapes of both the islands became convex polygons. The king of the kingdom wanted to establish a bridge to connect the two islands. To minimize the cost, the king asked you, the bishop, to find the minimal distance between the boundaries of the two islands.

Input

The input consists of several test cases.
Each test case begins with two integers NM. (3 ≤ NM ≤ 10000)
Each of the next N lines contains a pair of coordinates, which describes the position of a vertex in one convex polygon.
Each of the next M lines contains a pair of coordinates, which describes the position of a vertex in the other convex polygon.
A line with N = M = 0 indicates the end of input.
The coordinates are within the range [-10000, 10000].

Output

For each test case output the minimal distance. An error within 0.001 is acceptable.

Sample Input

4 4
0.00000 0.00000
0.00000 1.00000
1.00000 1.00000
1.00000 0.00000
2.00000 0.00000
2.00000 1.00000
3.00000 1.00000
3.00000 0.00000
0 0

Sample Output

1.00000

Source

 
 
 
 
 
经典算法。
 
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <math.h>
using namespace std; const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(double _x = 0.0,double _y = 0.0)
{
x = _x;
y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;
e = _e;
}
};
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
Point NearestPointToLineSeg(Point P,Line L)
{
Point result;
double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
if(t >= && t <= )
{
result.x = L.s.x + (L.e.x - L.s.x)*t;
result.y = L.s.y + (L.e.y - L.s.y)*t;
}
else
{
if(dist(P,L.s) < dist(P,L.e))
result = L.s;
else result = L.e;
}
return result;
}
/*
* 求凸包,Graham算法
* 点的编号0~n-1
* 返回凸包结果Stack[0~top-1]为凸包的编号
*/
const int MAXN = ;
Point list[MAXN];
int Stack[MAXN],top;
//相对于list[0]的极角排序
bool _cmp(Point p1,Point p2)
{
double tmp = (p1-list[])^(p2-list[]);
if(sgn(tmp) > )return true;
else if(sgn(tmp) == && sgn(dist(p1,list[]) - dist(p2,list[])) <= )
return true;
else return false;
}
void Graham(int n)
{
Point p0;
int k = ;
p0 = list[];
//找最下边的一个点
for(int i = ;i < n;i++)
{
if( (p0.y > list[i].y) || (p0.y == list[i].y && p0.x > list[i].x) )
{
p0 = list[i];
k = i;
}
}
swap(list[k],list[]);
sort(list+,list+n,_cmp);
if(n == )
{
top = ;
Stack[] = ;
return;
}
if(n == )
{
top = ;
Stack[] = ;
Stack[] = ;
return ;
}
Stack[] = ;
Stack[] = ;
top = ;
for(int i = ;i < n;i++)
{
while(top > && sgn((list[Stack[top-]]-list[Stack[top-]])^(list[i]-list[Stack[top-]])) <= )
top--;
Stack[top++] = i;
}
}
//点p0到线段p1p2的距离
double pointtoseg(Point p0,Point p1,Point p2)
{
return dist(p0,NearestPointToLineSeg(p0,Line(p1,p2)));
}
//平行线段p0p1和p2p3的距离
double dispallseg(Point p0,Point p1,Point p2,Point p3)
{
double ans1 = min(pointtoseg(p0,p2,p3),pointtoseg(p1,p2,p3));
double ans2 = min(pointtoseg(p2,p0,p1),pointtoseg(p3,p0,p1));
return min(ans1,ans2);
}
//得到向量a1a2和b1b2的位置关系
double Get_angle(Point a1,Point a2,Point b1,Point b2)
{
Point t = b1 - ( b2 - a1 );
return (a2-a1)^(t-a1);
}
//旋转卡壳,求两个凸包的最小距离
double rotating_calipers(Point p[],int np,Point q[],int nq)
{
int sp = , sq = ;
for(int i = ;i < np;i++)
if(sgn(p[i].y - p[sp].y) < )
sp = i;
for(int i = ;i < nq;i++)
if(sgn(q[i].y - q[sq].y) > )
sq = i;
double tmp;
double ans = 1e99;
for(int i = ;i < np;i++)
{
while(sgn(tmp = Get_angle(p[sp],p[(sp+)%np],q[sq],q[(sq+)%nq])) < )
sq = (sq + )%nq;
if(sgn(tmp) == )
ans = min(ans,dispallseg(p[sp],p[(sp+)%np],q[sq],q[(sq+)%nq]));
else ans = min(ans,pointtoseg(q[sq],p[sp],p[(sp+)%np]));
sp = (sp+)%np;
}
return ans;
} double solve(Point p[],int n,Point q[],int m)
{
return min(rotating_calipers(p,n,q,m),rotating_calipers(q,m,p,n));
}
Point p[MAXN],q[MAXN];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==)
{
if(n == && m == )break;
for(int i = ;i < n;i++)
list[i].input();
Graham(n);
n = top;
for(int i = ;i < n;i++)
p[i] = list[Stack[i]];
for(int i = ;i < m;i++)
list[i].input();
Graham(m);
m = top;
for(int i = ;i < m;i++)
q[i] = list[Stack[i]];
printf("%.5lf\n",solve(p,n,q,m));
}
return ;
}
 
 
 
 
 

POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)的更多相关文章

  1. POJ 3608 Bridge Across Islands [旋转卡壳]

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10455   Accepted: ...

  2. ●POJ 3608 Bridge Across Islands

    题链: http://poj.org/problem?id=3608 题解: 计算几何,求两个凸包间的最小距离,旋转卡壳 两个凸包间的距离,无非下面三种情况: 所以可以基于旋转卡壳的思想,去求最小距离 ...

  3. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)

    Description Thousands of thousands years ago there was a small kingdom located in the middle of the ...

  5. POJ 3608 Bridge Across Islands (旋转卡壳)

    [题目链接] http://poj.org/problem?id=3608 [题目大意] 求出两个凸包之间的最短距离 [题解] 我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点 ...

  6. POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳

    题意: 给你两个凸包,求其最短距离. 解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序. 还是说数据水了,没出乱给点或给逆时针点的数据呢..我直接默认顺时针给的点居然A ...

  7. POJ - 3608 Bridge Across Islands【旋转卡壳】及一些有趣现象

    给两个凸包,求这两个凸包间最短距离 旋转卡壳的基础题 因为是初学旋转卡壳,所以找了别人的代码进行观摩..然而发现很有意思的现象 比如说这个代码(只截取了关键部分) double solve(Point ...

  8. poj 3608 Bridge Across Islands 两凸包间最近距离

    /** 旋转卡壳,, **/ #include <iostream> #include <algorithm> #include <cmath> #include ...

  9. poj 3608 Bridge Across Islands

    题目:计算两个不相交凸多边形间的最小距离. 分析:计算几何.凸包.旋转卡壳.分别求出凸包,利用旋转卡壳求出对踵点对,枚举距离即可. 注意:1.利用向量法判断旋转,而不是计算角度:避免精度问题和TLE. ...

随机推荐

  1. python基础===python os.path模块

    os.path.abspath(path) #返回绝对路径 os.path.basename(path) #返回文件名 os.path.commonprefix(list) #返回list(多个路径) ...

  2. HDU 6188 Duizi and Shunzi 贪心

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6188 题意:给了n个数,然后现在问我们最多构成多少个对子和顺子,其中对子是2个相同的牌,顺子是3个连续 ...

  3. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 动态树

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2002 题意:加边,删边,查询到根的距离. #include <bits/stdc++ ...

  4. CSS原生布局方式

    前言 网页原生布局的方法其实网上有很多,大概为Flow(流动布局模型).Float(浮动布局模型).Layer(层级布局模型).<!--more--> Flow布局 流动布局模型其实就是默 ...

  5. 安装ubuntu-server16.0,设置WiFi

    想装个server版的Linux系统玩玩,下面记录一下遇到的坑. 1:安装语言选英文:可能是因为其他原因,我选中文的时候安装失败了,最后一次选中文的时候成功了. 2:以前装了一个ubuntu的,后面想 ...

  6. maven repository 配置

    eclipse maven 配置修改: maven repository 配置 http://blog.csdn.net/joewolf/article/details/4876604 Maven缺省 ...

  7. LeetCode239. Sliding Window Maximum

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

  8. Django_admin源码流程

    admin.py from django.contrib import admin from . import models """ 通过原生的django admin来 ...

  9. something about WinPE系统

    [问]:啥是Win PE系统?做什么用的?和Win7哪个好? [答]:Win PE系统是一个小型系统,一般用特殊工具将Win PE制作在U盘里,电脑110的志愿者们使用它对电脑上原有系统进行修复或是进 ...

  10. 四十五 常用内建模块 hashlib

    Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制 ...