嘟嘟嘟

这道题的题面相当的迷,我看了半天都没懂。最后看了题解的解释才懂。

他是这么个意思:对于所有能活着走到终点的路径,输出每一条路径中过路费最多的城市的最小值。

那么自然想到二分过路费,然后用dijkstra或spfa判断是否存在一条路径,该路径上的每一个城市的过路费都小于当前二分值mid。用dijkstra复杂度就是O(nlog2n),spfa玄学,但也能过。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = 1e4 + ;
const int maxe = 5e4 + ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << ) + (ans << ) + ch - '', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n, m;
ll b, a[maxn], Max = ; struct Edge
{
int nxt, to; ll w;
}e[maxe << ];
int head[maxn], ecnt = -;
void addEdge(int x, int y, ll w)
{
e[++ecnt] = (Edge){head[x], y, w};
head[x] = ecnt;
} #define pr pair<ll, int>
#define mp make_pair
ll dis[maxn];
bool in[maxn];
priority_queue<pr, vector<pr>, greater<pr> > q;
bool dijkstra(ll x)
{
for(int i = ; i <= n; ++i) dis[i] = (ll)INF * (ll)INF, in[i] = ;
dis[] = ;
while(!q.empty()) q.pop();
q.push(mp(dis[], ));
while(!q.empty())
{
int now = q.top().second; q.pop();
if(in[now]) continue;
in[now] = ;
for(int i = head[now]; i != -; i = e[i].nxt)
{
if(dis[e[i].to] > dis[now] + e[i].w && dis[now] + e[i].w < b && a[e[i].to] <= x)
{
if(e[i].to == n) return ;
dis[e[i].to] = dis[now] + e[i].w;
q.push(mp(dis[e[i].to], e[i].to));
}
}
}
return ;
} int main()
{
Mem(head, -);
n = read(); m = read(); b = read();
for(int i = ; i <= n; ++i) a[i] = read();
for(int i = ; i <= m; ++i)
{
int x = read(), y = read(); ll w = read();
if(w > b) continue;
Max = max(Max, w);
addEdge(x, y, w); addEdge(y, x, w);
}
ll L = , R = (ll)INF * (ll)INF;
while(L < R)
{
ll mid = (L + R) >> ;
if(dijkstra(mid)) R = mid;
else L = mid + ;
}
if(L == (ll)INF * (ll)INF) puts("AFK");
else write(L), enter;
return ;
}

luogu P1462 通往奥格瑞玛的道路的更多相关文章

  1. luogu P1462 通往奥格瑞玛的道路--spfa+二分答案

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  2. [Luogu P1462] 通往奥格瑞玛的道路 (二分答案+最短路径)

    题面 传送门:https://www.luogu.org/problemnew/show/P1462 Solution 这道题如果去除掉经过城市的收费.那么就是裸的最短路 但是题目要求经过城市中最多的 ...

  3. Luogu P1462 通往奥格瑞玛的道路(最短路+二分)

    P1462 通往奥格瑞玛的道路 题面 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己 ...

  4. 【luogu P1462 通往奥格瑞玛的道路】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1462 记住HP=0也叫死. #include <queue> #include <cstd ...

  5. Luogu P1462 通往奥格瑞玛的道路【二分/最短路】

    题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛 题目描述 在艾泽拉斯, ...

  6. Luogu P1462 通往奥格瑞玛的道路 二分答案+最短路

    先二分答案,再跑最短路,跑的时候遇到 过路费超过二分的答案的 就不拿他更新最短路 #include<cstdio> #include<iostream> #include< ...

  7. P1462 通往奥格瑞玛的道路

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

  8. P1462 通往奥格瑞玛的道路 (二分+最短路)

    题目 P1462 通往奥格瑞玛的道路 给定\(n\)个点\(m\)条边,每个点上都有点权\(f[i]\),每条边上有边权,找一条道路,使边权和小于给定的数\(b\),并使最大点权最小. 解析 二分一下 ...

  9. 洛谷 P1462 通往奥格瑞玛的道路 解题报告

    P1462 通往奥格瑞玛的道路 题目背景 在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量 有一天他醒来后发现自己居然到了联盟的主城暴风城 在被众多联盟的士兵攻击后,他决定逃回自己的家乡 ...

随机推荐

  1. JAVA实现多线程处理批量发送短信、APP推送

    /** * 推送消息 APP.短信 * @param message * @throws Exception */ public void sendMsg(Message message) throw ...

  2. [android] 安卓自定义样式和主题

    简单练习自定义样式和主题,样式是加在View上,主题是加在Application或者Activity上 styles.xml <?xml version="1.0" enco ...

  3. 简单的CRUD(一)

    一.JDBC的概述--(来源于百度) JDBC(Java DataBase Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问, ...

  4. 解决javac无效的目标发行版1.8问题

    之前遇到了几次这个问题,解决了又忘记了,所以特别记录一下这个问题. 遇到这个问题,改pom文件不行,改project的sdk也不行,后面看到网上说真正的原因是maven的runner的jre的环境依然 ...

  5. Light OJ 1422 - Halloween Costumes(区间DP 最少穿几件)

    http://www.cnblogs.com/kuangbin/archive/2013/04/29/3051392.html http://www.cnblogs.com/ziyi--caolu/a ...

  6. 查询多表集合(union)、查询时建临时字段、查询时给字段设置默认值

    () UNION () UNION (select i.create_time as time,i.investment_amount as amount,i.invest_state as stat ...

  7. JS封装继承函数

    function extend(child,parent){ var F=function(){} F.prototype=parent.prototype; child.prototype=new ...

  8. console的一些方法

    原文参考http://mp.weixin.qq.com/s?__biz=MzU3MDA0NTMzMA==&mid=2247485510&idx=2&sn=0adff5754a2 ...

  9. 服务器端渲染VS浏览器端渲染

    1)浏览器渲染和服务器渲染区别:何为渲染?如果我们只是想显示一堆不变的数据,那么我们直接写一个a.html丢到服务器上让客户端访问就可以了.但这是基本不可能的事情,数据一般是变化的.你不可能为每套数据 ...

  10. ArcGIS DataStore手册——管理篇

    第二章:ArcGIS DataStore管理维护 1.备份管理 备份的目的在于发生原始数据损坏或其他突发情况时,可避免数据丢失,并可快速的使用备份数据来恢复,以保证服务仍可使用. 单机模式下,可使用D ...