POJ 2986 A Triangle and a Circle(三角形和圆形求交)
Description
Given one triangle and one circle in the plane. Your task is to calculate the common area of these two figures.
Input
The input will contain several test cases. Each line of input describes a test case. Each test case consists of nine floating point numbers, x1, y1, x2, y2, x3, y3, x4, y4 and r, where (x1, y1), (x2, y2) and (x3, y3) are the three vertices of the triangle and (x4, y4) is the center of the circle and r is the radius. We guarantee the triangle and the circle are not degenerate.
Output
For each test case you should output one real number, which is the common area of the triangle and the circle, on a separate line. The result should be rounded to two decimal places.
题目大意:求一个三角形和一个圆形的交的面积。
思路:圆心和三个三角形的三个点连线,把一个三角形划分为3个三角形,利用有向面积来算。然后就变成了求一个三角形和圆的交的面积,其中三角形的一个顶点为圆心。然后各种分情况讨论(但是要分的情况起码会比直接算一个普通三角形和圆形的交要少得多)。我的姿势似乎不是很高级,好像有些什么奇怪的公式……
PS:调了一下发现居然是以前用的模板错了……
代码(1938MS):
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = ; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} inline double sqr(double x) {
return x * x;
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const double &b) const {
return Point(x * b, y * b);
}
Point operator / (const double &b) const {
return Point(x / b, y / b);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y;
}
double length() {
return sqrt(x * x + y * y);
}
double angle() {
return atan2(y, x);
}
Point unit() {
return *this / length();
}
void makeAg() {
ag = atan2(y, x);
}
void print() {
printf("%.10f %.10f\n", x, y);
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn right
double cross(const Point &sp, const Point &ed, const Point &op) {
return cross(sp - op, ed - op);
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} double includedAngle(const Point &a, const Point &b, const Point &o) {
double ret = abs((a - o).angle() - (b - o).angle());
if(sgn(ret - PI) > ) ret = * PI - ret;
return ret;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; //ax + by + c > 0
Line buildLine(double a, double b, double c) {
if(sgn(a) == && sgn(b) == ) return Line(Point(sgn(c) > ? - : , INF), Point(, INF));
if(sgn(a) == ) return Line(Point(sgn(b), -c/b), Point(, -c/b));
if(sgn(b) == ) return Line(Point(-c/a, ), Point(-c/a, sgn(a)));
if(b < ) return Line(Point(, -c/b), Point(, -(a + c) / b));
else return Line(Point(, -(a + c) / b), Point(, -c/b));
} void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st)) == );
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} double Point_to_Line(const Point &p, const Line &L) {
return fabs(cross(p, L.st, L.ed)/dist(L.st, L.ed));
} double Point_to_Seg(const Point &p, const Seg &L) {
if(sgn((L.ed - L.st) * (p - L.st)) < ) return dist(p, L.st);
if(sgn((L.st - L.ed) * (p - L.ed)) < ) return dist(p, L.ed);
return Point_to_Line(p, L);
} double Seg_to_Seg(const Seg &a, const Seg &b) {
double ans1 = min(Point_to_Seg(a.st, b), Point_to_Seg(a.ed, b));
double ans2 = min(Point_to_Seg(b.st, a), Point_to_Seg(b.ed, a));
return min(ans1, ans2);
} struct Circle {
Point c;
double r;
Circle() {}
Circle(Point c, double r): c(c), r(r) {}
void read() {
c.read();
scanf("%lf", &r);
}
double area() const {
return PI * r * r;
}
bool contain(const Circle &rhs) const {
return sgn(dist(c, rhs.c) + rhs.r - r) <= ;
}
bool contain(const Point &p) const {
return sgn(dist(c, p) - r) <= ;
}
bool intersect(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) < ;
}
bool tangency(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) == ;
}
Point pos(double angle) const {
Point p = Point(c.x + r, c.y);
return rotate(p, angle, c);
}
}; double CommonArea(const Circle &A, const Circle &B) {
double area = 0.0;
const Circle & M = (A.r > B.r) ? A : B;
const Circle & N = (A.r > B.r) ? B : A;
double D = dist(M.c, N.c);
if((D < M.r + N.r) && (D > M.r - N.r)) {
double cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
double cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
double alpha = * acos(cosM);
double beta = * acos(cosN);
double TM = 0.5 * M.r * M.r * (alpha - sin(alpha));
double TN = 0.5 * N.r * N.r * (beta - sin(beta));
area = TM + TN;
}
else if(D <= M.r - N.r) {
area = N.area();
}
return area;
} int intersection(const Seg &s, const Circle &cir, Point &p1, Point &p2) {
double angle = includedAngle(s.ed, cir.c, s.st);
double B = dist(cir.c, s.st);
double a = , b = - * B * cos(angle), c = sqr(B) - sqr(cir.r);
double delta = sqr(b) - * a * c;
if(sgn(delta) < ) return ;
double x1 = (-b - sqrt(delta)) / ( * a), x2 = (-b + sqrt(delta)) / ( * a);
Vector v = (s.ed - s.st).unit();
p1 = s.st + v * x1;
p2 = s.st + v * x2;
return + sgn(delta);
} double CommonArea(const Circle &cir, Point p1, Point p2) {
if(cir.contain(p1) && cir.contain(p2)) {
return area(cir.c, p1, p2);
} else if(!cir.contain(p1) && !cir.contain(p2)) {
Point q1, q2;
int t = intersection(Line(p1, p2), cir, q1, q2);
if(t == ) {
double angle = includedAngle(p1, p2, cir.c);
return 0.5 * sqr(cir.r) * angle;
} else {
double angle1 = includedAngle(p1, p2, cir.c);
double angle2 = includedAngle(q1, q2, cir.c);
if(isOnSeg(Seg(p1, p2), q1))return 0.5 * sqr(cir.r) * (angle1 - angle2 + sin(angle2));
else return 0.5 * sqr(cir.r) * angle1;
}
} else {
if(cir.contain(p2)) swap(p1, p2);
Point q1, q2;
intersection(Line(p1, p2), cir, q1, q2);
double angle = includedAngle(q2, p2, cir.c);
double a = area(cir.c, p1, q2);
double b = 0.5 * sqr(cir.r) * angle;
return a + b;
}
} struct Triangle {
Point p[];
Triangle() {}
Triangle(Point *t) {
for(int i = ; i < ; ++i) p[i] = t[i];
}
void read() {
for(int i = ; i < ; ++i) p[i].read();
}
double area() const {
return ::area(p[], p[], p[]);
}
Point& operator[] (int i) {
return p[i];
}
}; double CommonArea(Triangle tir, const Circle &cir) {
double ret = ;
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
ret += sgn(cross(tir[], cir.c, tir[])) * CommonArea(cir, tir[], tir[]);
return abs(ret);
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
};
//the convex hull is clockwise
void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) <= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} //ix and jx is the points whose distance is return, res.p[n - 1] = res.p[0], res must be clockwise
double dia_rotating_calipers(Poly &res, int &ix, int &jx) {
double dia = ;
int q = ;
for(int i = ; i < res.n - ; ++i) {
while(sgn(cross(res.p[i], res.p[q + ], res.p[i + ]) - cross(res.p[i], res.p[q], res.p[i + ])) > )
q = (q + ) % (res.n - );
if(sgn(dist(res.p[i], res.p[q]) - dia) > ) {
dia = dist(res.p[i], res.p[q]);
ix = i; jx = q;
}
if(sgn(dist(res.p[i + ], res.p[q]) - dia) > ) {
dia = dist(res.p[i + ], res.p[q]);
ix = i + ; jx = q;
}
}
return dia;
}
//a and b must be clockwise, find the minimum distance between two convex hull
double half_rotating_calipers(Poly &a, Poly &b) {
int sa = , sb = ;
for(int i = ; i < a.n; ++i) if(sgn(a.p[i].y - a.p[sa].y) < ) sa = i;
for(int i = ; i < b.n; ++i) if(sgn(b.p[i].y - b.p[sb].y) < ) sb = i;
double tmp, ans = dist(a.p[], b.p[]);
for(int i = ; i < a.n; ++i) {
while(sgn(tmp = cross(a.p[sa], a.p[sa + ], b.p[sb + ]) - cross(a.p[sa], a.p[sa + ], b.p[sb])) > )
sb = (sb + ) % (b.n - );
if(sgn(tmp) < ) ans = min(ans, Point_to_Seg(b.p[sb], Seg(a.p[sa], a.p[sa + ])));
else ans = min(ans, Seg_to_Seg(Seg(a.p[sa], a.p[sa + ]), Seg(b.p[sb], b.p[sb + ])));
sa = (sa + ) % (a.n - );
}
return ans;
} double rotating_calipers(Poly &a, Poly &b) {
return min(half_rotating_calipers(a, b), half_rotating_calipers(b, a));
} /*******************************************************************************************/ Triangle tir;
Circle cir; int main() {
while(scanf("%lf%lf", &tir[].x, &tir[].y) != EOF) {
tir[].read();
tir[].read();
cir.read();
//cout<<Point_to_Line(cir.c, Line(tir[0], tir[1]))<<endl;
if(sgn(cross(tir[], tir[], tir[])) == ) puts("0.00");
else printf("%.2f\n", CommonArea(tir, cir) + EPS);
}
}
POJ 2986 A Triangle and a Circle(三角形和圆形求交)的更多相关文章
- POJ 2986 A Triangle and a Circle 圆与三角形的公共面积
计算几何模板 #include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h& ...
- POJ 2986 A Triangle and a Circle
题意:给定一个三角形,以及一个圆的圆心坐标和半径,求圆和三角形的相交面积. 思路: 用三角剖分,三角形上每个线段都变成这个线段与圆心的三角形,然后算出每个三角形与圆的相交面积,然后根据有向面积的正负累 ...
- poj 1090:The Circumference of the Circle(计算几何,求三角形外心)
The Circumference of the Circle Time Limit: 2 Seconds Memory Limit: 65536 KB To calculate the c ...
- ray与triangle/quad求交二三事
引擎中,ray与quad求交,算法未细看,但有求解二次方程,不解.ray与triangle求交,使用的是97年经典算法,仔细看过论文,多谢小武同学指点,用到了克拉默法则求解线性方程组.想模仿该方法,做 ...
- 光线求交-面、三角形、球 (Ray intersection)
光线求交 光线定义:position \(a(t)\) = \(o\) + \(t\vec{d}\); 球定义: center p, radius r; 平面定义:normal \(\vec{n}\) ...
- CSS 三角形与圆形
1. 概述 1.1 说明 通过边框(border)的宽度与边框圆角(border-radius)来设置所需的三角形与圆形. 1.2 边框 宽高都为0时,边框设置的不同结果也不同,如下: 1.四个边框都 ...
- python应用-已知三角形的边长求他的面积和周长
""" 已知三角形的边长求他的面积和周长 Author:罗万财 Date:2017-3-3 """ import math a=float( ...
- C语言:已知三角形三边长求面积
//已知三角形三边长求面积 #include <stdio.h> #include <math.h> int main() { float a,b,c,p,s; int x=0 ...
- POJ - 2079:Triangle (旋转卡壳,求最大三角形)
Given n distinct points on a plane, your task is to find the triangle that have the maximum area, wh ...
随机推荐
- 丑数(Ugly Numbers, UVa 136)
丑数(Ugly Numbers, UVa 136) 题目描述 我们把只包含因子2.3和5的数称作丑数(Ugly Number).求按从小到大的顺序的第1500个丑数.例如6.8都是丑数,但14不是,因 ...
- C++ Primer 第8章作业
练习8.1 编写函数,接受一个istream&参数,返回值类型也是istream&. 此函数须从给定流中读取数据,直至遇到文件结束标识时停止.它将读取的数据打印在标准输出上.完成这些操 ...
- h5开发中所遇到的兼容性及所遇到的常见问题
1. 移动端border1px问题 <script> var viewport = document.querySelector("meta[name=viewport]&quo ...
- TCC : Tiny C Compiler (2018-2-6)
饭墙下载,有缘上传: https://files.cnblogs.com/files/bhfdz/tcc-0.9.27-win32-bin.zip https://files.cnblogs.com/ ...
- 大数据&人工智能&云计算
仅从技术上讲大数据.人工智能都包含工程.算法两方面内容: 一.大数据: 工程: 1)云计算,核心是怎么管理大量的计算机.存储.网络. 2)核心是如何管理数据:代表是分布式存储,HDFS 3)核心是如何 ...
- 基于Python的飞机大战游戏
前几天决定学Python,上网找了教程看了两天,和C比起来面向对象的特性真的都很便捷,有了类开发各种敌机,子弹什么的都很方便. 在此要感谢开发pygame模块的开发人员,真的很好用(逃 效果图↓ 主函 ...
- openwrt利用openvpn两网互通
目录 创建证书文件服务器端配置防火墙配置客户端配置uvs-001(远端PC)uvs-002(网关下属设备)测试连接 创建证书文件 安装证书工具 opkg openvpn-easy-rsa 创建证书 b ...
- django创建第一个子应用-3
在Web应用中,通常有一些业务功能模块是在不同的项目中都可以复用的,故在开发中通常将工程项目拆分为不同的子功能模块,各功能模块间可以保持相对的独立,在其他工程项目中需要用到某个特定功能模块时,可以将该 ...
- mfc和qt的区别
注:引用来源 http://wenda.chinabaike.com/b/30934/2013/1208/707410.html QT使用的编译器是MinGW,即Linux下的GCC移植到window ...
- gsl 复数
一.复数的表示 复数的两种表示: gsl复数结构的声明和部分宏在gsl_complex.h中,方法的声明和另一部分宏在gsl_complex_math.h.复数的表示(结构)有三种,即float型.d ...