题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1695

题目大意:

求解区间[1, n]和[1, m]中有多少对不同的x和y使得gcd(x, y) == k

其中x=5 y=7和x=7 y=5是同一对

解题思路:

首先如果gcd为k说明[1, n]中只有k的倍数为x,同理在[1, m]中也只有k的倍数为y。

所以如果先特判,k=0或者k>n或者k>m都是不存在解的情况。

之后n /= k, m /= k,这是之选出k的倍数,作为x和y,并且gcd(x, y) = k,就是等价于求在现在的1-n区间和1-m区间中求互质对数。

还需考虑重复的情况,所以枚举m的时候求区间[m, n]与m互质的数,这样不会重复枚举。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + ;
ll a[], tot;
ll gcd(ll a, ll b)
{
return b == ? a : gcd(b, a % b);
}
void init(ll n)//求出n的素因子
{
tot = ;
for(ll i = ; i * i <= n; i++)
{
if(n % i == )
{
a[tot++] = i;
while(n % i == )n /= i;
}
}
if(n != )a[tot++] = n;
}
ll sum(ll m)//求[1, m]中与n互质的个数
{
ll ans = ;
for(int i = ; i < ( << tot); i++)//a数组的子集
{
ll num = ;
for(int j = i; j; j >>= )if(j & )num++;//统计i的二进制中1的个数
ll lcm = ;
for(int j = ; j < tot; j++)
if(( << j) & i)
{
lcm = lcm / gcd(lcm, a[j]) * a[j];
if(lcm > m)break;
}
if(num & )ans += m / lcm;//奇数加上
else ans -= m / lcm;//偶数减去
}
return m - ans;
}
int main()
{
int T, cases = , a, b, n, m, k;
cin >> T;
while(T--)
{
ll ans;
scanf("%d%d%d%d%d", &a, &n, &b, &m, &k);
if(k == || n < k || m < k)ans = ;
else
{
n /= k, m /= k;
if(n < m)swap(n, m);
ans = n;
for(int i = ; i <= m; i++)
{
init(i);
//cout<<ans<<endl;
ans += sum(n) - sum(i - );
}
}
cout<<"Case "<<++cases<<": "<<ans<<endl;
}
return ;
}

hdu-1695 GCD---容斥定理的更多相关文章

  1. HDU 1695 GCD 容斥

    GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...

  2. hdu 1695 GCD 容斥+欧拉函数

    题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...

  3. HDU - 1695 GCD (容斥+枚举)

    题意:求区间1<=i<=b与区间1<=j<=d之间满足gcd(i,j) = k 的数对 (i,j) 个数.(i,j)与(j,i) 算一个. 分析:gcd(i,j)=k可以转化为 ...

  4. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  5. HDU 5514 Frogs 容斥定理

    Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...

  6. 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)

    GCD Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submissio ...

  7. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. HDU 1695 GCD(容斥定理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  9. hdu 6053 trick gcd 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...

  10. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. Python基础(9) - 类

    Python 看下面一个简单类: >>> class MyClass(object): ... """ ... this is a class with ...

  2. 【c++】构造函数初始化列表中成员初始化的次序性

    上代码 #include <iostream> using namespace std; class A { public: A(int v): j(v + 2), i(j) {} voi ...

  3. ExtJs6编译之后上线报错无法查看到的解决方法

    最近Extjs编译后部署遇到了一个错误c is not a constructor,报错位置在app.js里,这根本没法找 解决方法:用命令sencha app build testing 编译之后, ...

  4. step5: 编写spider爬取

    改写parse函数 实现功能: 1.获取文章列表页中的文章url并交给scrapy下载后,交给解析函数进行具体字段的解析2.获取下一页的url并交给scrapy进行下载,下载完成后交给parse 提取 ...

  5. java中四种引用类型(对象的强、软、弱和虚引用)

    对象的强.软.弱和虚引用在JDK 1.2以前的版本中,若一个对象不被任何变量引用,那么程序就无法再使用这个对象.也就是说,只有对象处于可触及(reachable)状态,程序才能使用它.从JDK 1.2 ...

  6. easyui焦点离开事件的解决方案

  7. golang学习之闭包

    匿名函数不能够独立存在,但可以被赋值于某个变量,即保存函数的地址到变量中:fplus := func(x, y int) int { return x + y },然后通过变量名对函数进行调用:fpl ...

  8. nrm的使用

    我们在开发过程中,经常会使用到 npm  install ,但是有时候npm是不稳定的,这就大大的降低了我们的开发效率.nrm正好解决了我们的这一痛点,他可以在不同的镜像之间切换,非常的方便. 一.n ...

  9. Spring 中任意位置获取 session 和 request

    在web.xml中添加监听: <listener> <listener-class>org.springframework.web.context.ContextLoaderL ...

  10. css移动端:acitve效果的实现

    做移动前端也有一些日子了,一直有个问题没有解决,就是与pc端那样的一个:hover的效果,:hover是鼠标指针浮动在其上的元素的一个选择器,但因为在移动端是没有鼠标的,代替的是触摸屏,用户也不是有“ ...