hdu-1695 GCD---容斥定理
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1695
题目大意:
求解区间[1, n]和[1, m]中有多少对不同的x和y使得gcd(x, y) == k
其中x=5 y=7和x=7 y=5是同一对
解题思路:
首先如果gcd为k说明[1, n]中只有k的倍数为x,同理在[1, m]中也只有k的倍数为y。
所以如果先特判,k=0或者k>n或者k>m都是不存在解的情况。
之后n /= k, m /= k,这是之选出k的倍数,作为x和y,并且gcd(x, y) = k,就是等价于求在现在的1-n区间和1-m区间中求互质对数。
还需考虑重复的情况,所以枚举m的时候求区间[m, n]与m互质的数,这样不会重复枚举。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + ;
ll a[], tot;
ll gcd(ll a, ll b)
{
return b == ? a : gcd(b, a % b);
}
void init(ll n)//求出n的素因子
{
tot = ;
for(ll i = ; i * i <= n; i++)
{
if(n % i == )
{
a[tot++] = i;
while(n % i == )n /= i;
}
}
if(n != )a[tot++] = n;
}
ll sum(ll m)//求[1, m]中与n互质的个数
{
ll ans = ;
for(int i = ; i < ( << tot); i++)//a数组的子集
{
ll num = ;
for(int j = i; j; j >>= )if(j & )num++;//统计i的二进制中1的个数
ll lcm = ;
for(int j = ; j < tot; j++)
if(( << j) & i)
{
lcm = lcm / gcd(lcm, a[j]) * a[j];
if(lcm > m)break;
}
if(num & )ans += m / lcm;//奇数加上
else ans -= m / lcm;//偶数减去
}
return m - ans;
}
int main()
{
int T, cases = , a, b, n, m, k;
cin >> T;
while(T--)
{
ll ans;
scanf("%d%d%d%d%d", &a, &n, &b, &m, &k);
if(k == || n < k || m < k)ans = ;
else
{
n /= k, m /= k;
if(n < m)swap(n, m);
ans = n;
for(int i = ; i <= m; i++)
{
init(i);
//cout<<ans<<endl;
ans += sum(n) - sum(i - );
}
}
cout<<"Case "<<++cases<<": "<<ans<<endl;
}
return ;
}
hdu-1695 GCD---容斥定理的更多相关文章
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- hdu 1695 GCD 容斥+欧拉函数
题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...
- HDU - 1695 GCD (容斥+枚举)
题意:求区间1<=i<=b与区间1<=j<=d之间满足gcd(i,j) = k 的数对 (i,j) 个数.(i,j)与(j,i) 算一个. 分析:gcd(i,j)=k可以转化为 ...
- HDU - 4135 Co-prime 容斥定理
题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)
GCD Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submissio ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD(容斥定理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- HDU 1796How many integers can you find(简单容斥定理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
随机推荐
- 【find】Linux中find常见用法示例
1.根据 某个名字在某个目录下进行查找 find /etc/ -name "*.conf" 在/etc/目录下 查找 后缀名为conf 的文件
- 在浏览器中输入URL并回车后都发生了什么?
1.解析URL ________________________________________________________________________ 关于URL: URL(Universa ...
- php中cookie的操作
php设置和获取cookie 创建cookie setcookie('mycookie','value',time()+86400);//参数3 cookie过期时间//函数原型:int setcoo ...
- Java - Latch和Barrier的区别
之所以把Latch与Barrier放在一起比较是因为他们给人一种相似的感觉. 他们都是阻塞一些行为直至某个事件发生,但Latch是等待某个事件发生,而Barrier是等待线程. 先比较一下JCIP中对 ...
- golang学习之beego增删改查代码实现
记录下使用beego的增删改查实现,数据库使用mysql,完整代码如下: package main import ( _ "crud_beego/routers" //自动注册路由 ...
- 三:SpringTransaction
一:什么是事务: 事务逻辑上的一组操作,组成这组操作的各个逻辑单元,要么一起成功,要么一起失败. 二:事务特性(ACID): 原子性(Atomicity) :强调事务的不可分割. 一致性(Consis ...
- 二、单层感知器和BP神经网络算法
一.单层感知器 1958年[仅仅60年前]美国心理学家FrankRosenblant剔除一种具有单层计算单元的神经网络,称为Perceptron,即感知器.感知器研究中首次提出了自组织.自学习的思想, ...
- Selector#wakeup()
看thrift源码发现selector.wakeup()方法,通常在selector.select()后线程会阻塞.使用wakeup()方法,线程会立即返回.源码分析应该是用的线程中断实现的.下面是个 ...
- 一台电脑启动多个tomcat
原文 http://dong-shuai22-126-com.iteye.com/blog/1763666 如果现在一台机器上已经部署了一个tomcat服务,无论这个tomcat是否已经注册为服务了, ...
- struts2 国际化语言转换
学习struts2,了解了使用struts2的配置文件可以走向国际化,实现页面的语言转换.我已中文和英文为例,简单的实现登录页面的国际化 废话不多说,上代码 一,login.jsp页面 使用s标签&l ...