并发

goroutine

goroutine是Go并行设计的核心。goroutine说到底其实就是协程,但是它比线程更小,十几个goroutine可能体现在底层就是五六个线程,Go语言内部帮你实现了这些goroutine之间的内存共享。执行goroutine只需极少的栈内存(大概是4~5KB),当然会根据相应的数据伸缩。也正因为如此,可同时运行成千上万个并发任务。goroutine比thread更易用、更高效、更轻便。

goroutine是通过Go的runtime管理的一个线程管理器。goroutine通过go关键字实现了,其实就是一个普通的函数。

go hello(a, b, c)

通过关键字go就启动了一个goroutine。我们来看一个例子

package main

import (
"fmt"
"runtime"
) func say(s string) {
for i := 0; i < 5; i++ {
runtime.Gosched()
fmt.Println(s)
}
} func main() {
go say("world") //开一个新的Goroutines执行
say("hello") //当前Goroutines执行
} // 以上程序执行后将输出:
// hello
// world
// hello
// world
// hello
// world
// hello
// world
// hello

我们可以看到go关键字很方便的就实现了并发编程。 上面的多个goroutine运行在同一个进程里面,共享内存数据,不过设计上我们要遵循:不要通过共享来通信,而要通过通信来共享。

runtime.Gosched()表示让CPU把时间片让给别人,下次某个时候继续恢复执行该goroutine。

channels

goroutine运行在相同的地址空间,因此访问共享内存必须做好同步。那么goroutine之间如何进行数据的通信呢,Go提供了一个很好的通信机制channel。channel可以与Unix shell 中的双向管道做类比:可以通过它发送或者接收值。这些值只能是特定的类型:channel类型。定义一个channel时,也需要定义发送到channel的值的类型。注意,必须使用make 创建channel:

ci := make(chan int)
cs := make(chan string)
cf := make(chan interface{})
channel通过操作符<-来接收和发送数据 ch <- v // 发送v到channel ch.
v := <-ch // 从ch中接收数据,并赋值给v

我们把这些应用到我们的例子中来:

package main

import "fmt"

func sum(a []int, c chan int) {
total := 0
for _, v := range a {
total += v
}
c <- total // send total to c
} func main() {
a := []int{7, 2, 8, -9, 4, 0} c := make(chan int)
go sum(a[:len(a)/2], c)
go sum(a[len(a)/2:], c)
x, y := <-c, <-c // receive from c fmt.Println(x, y, x + y)
}

默认情况下,channel接收和发送数据都是阻塞的,除非另一端已经准备好,这样就使得Goroutines同步变的更加的简单,而不需要显式的lock。所谓阻塞,也就是如果读取(value := <-ch)它将会被阻塞,直到有数据接收。其次,任何发送(ch<-5)将会被阻塞,直到数据被读出。无缓冲channel是在多个goroutine之间同步很棒的工具。

Buffered Channels

上面我们介绍了默认的非缓存类型的channel,不过Go也允许指定channel的缓冲大小,很简单,就是channel可以存储多少元素。ch:= make(chan bool, 4),创建了可以存储4个元素的bool 型channel。在这个channel 中,前4个元素可以无阻塞的写入。当写入第5个元素时,代码将会阻塞,直到其他goroutine从channel 中读取一些元素,腾出空间。

ch := make(chan type, value)
当 value = 0 时,channel 是无缓冲阻塞读写的,当value > 0 时,channel 有缓冲、是非阻塞的,直到写满 value 个元素才阻塞写入。

我们看一下下面这个例子,你可以在自己本机测试一下,修改相应的value值

package main

import "fmt"

func main() {
c := make(chan int, 2)//修改2为1就报错,修改2为3可以正常运行
c <- 1
c <- 2
fmt.Println(<-c)
fmt.Println(<-c)
}
//修改为1报如下的错误:
//fatal error: all goroutines are asleep - deadlock!
Range和Close

上面这个例子中,我们需要读取两次c,这样不是很方便,Go考虑到了这一点,所以也可以通过range,像操作slice或者map一样操作缓存类型的channel,请看下面的例子

package main

import (
"fmt"
) func fibonacci(n int, c chan int) {
x, y := 1, 1
for i := 0; i < n; i++ {
c <- x
x, y = y, x + y
}
close(c)
} func main() {
c := make(chan int, 10)
go fibonacci(cap(c), c)
for i := range c {
fmt.Println(i)
}
}

for i := range c能够不断的读取channel里面的数据,直到该channel被显式的关闭。上面代码我们看到可以显式的关闭channel,生产者通过内置函数close关闭channel。关闭channel之后就无法再发送任何数据了,在消费方可以通过语法v, ok := <-ch测试channel是否被关闭。如果ok返回false,那么说明channel已经没有任何数据并且已经被关闭。

记住应该在生产者的地方关闭channel,而不是消费的地方去关闭它,这样容易引起panic

另外记住一点的就是channel不像文件之类的,不需要经常去关闭,只有当你确实没有任何发送数据了,或者你想显式的结束range循环之类的

Select

我们上面介绍的都是只有一个channel的情况,那么如果存在多个channel的时候,我们该如何操作呢,Go里面提供了一个关键字select,通过select可以监听channel上的数据流动。

select默认是阻塞的,只有当监听的channel中有发送或接收可以进行时才会运行,当多个channel都准备好的时候,select是随机的选择一个执行的。

package main

import "fmt"

func fibonacci(c, quit chan int) {
x, y := 1, 1
for {
select {
case c <- x:
x, y = y, x + y
case <-quit:
fmt.Println("quit")
return
}
}
} func main() {
c := make(chan int)
quit := make(chan int)
go func() {
for i := 0; i < 10; i++ {
fmt.Println(<-c)
}
quit <- 0
}()
fibonacci(c, quit)
}

在select里面还有default语法,select其实就是类似switch的功能,default就是当监听的channel都没有准备好的时候,默认执行的(select不再阻塞等待channel)。

select {
case i := <-c:
// use i
default:
// 当c阻塞的时候执行这里
}

超时

有时候会出现goroutine阻塞的情况,那么我们如何避免整个程序进入阻塞的情况呢?我们可以利用select来设置超时,通过如下的方式实现

func main() {
c := make(chan int)
o := make(chan bool)
go func() {
for {
select {
case v := <- c:
println(v)
case <- time.After(5 * time.Second):
println("timeout")
o <- true
break
}
}
}()
<- o
}

runtime goroutine

runtime包中有几个处理goroutine的函数:

  • Goexit 退出当前执行的goroutine,但是defer函数还会继续调用
  • Gosched 让出当前goroutine的执行权限,调度器安排其他等待的任务运行,并在下次某个时候从该位置恢复执行。
  • NumCPU 返回 CPU 核数量
  • NumGoroutine 返回正在执行和排队的任务总数
  • GOMAXPROCS 用来设置可以并行计算的CPU核数的最大值,并返回之前的值。

go学习笔记-并发的更多相关文章

  1. 《Effective Java》 学习笔记 —— 并发

    <Effective Java>第二版学习笔记之并发编程. 第66条 同步访问共享的可变数据 * 关键字synchronized可以保证在同一时刻只有一个线程可以执行某个方法或代码块. * ...

  2. JMeter学习笔记--并发登录测试

    账号密码读取文件 1.设置线程数为30,并发用户量就是30个用户同时登录 2.添加同步定时器 添加 Synchronizing Timer 同步定时器,为了阻塞线程,当线程数达到指定数量,再同时释放, ...

  3. golang学习笔记----并发

    并发模型 并发目前来看比较主流的就三种: 多线程:每个线程一次处理一个请求,线程越多可并发处理的请求数就越多,但是在高并发下,多线程开销会比较大. 协程:无需抢占式的调度,开销小,可以有效的提高线程的 ...

  4. socket学习笔记——并发服务器与I/O程序分割客户端

    client.c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <u ...

  5. [原创]java WEB学习笔记93:Hibernate学习之路---Hibernate 缓存介绍,缓存级别,使用二级缓存的情况,二级缓存的架构集合缓存,二级缓存的并发策略,实现步骤,集合缓存,查询缓存,时间戳缓存

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  6. Go语言并发与并行学习笔记(一)

    转:http://blog.csdn.net/kjfcpua/article/details/18265441 如果不是我对真正并行的线程的追求,就不会认识到Go有多么的迷人. Go语言从语言层面上就 ...

  7. golang学习笔记20 一道考察对并发多协程操作一个共享变量的面试题

    golang学习笔记20 一道考察对并发多协程操作一个共享变量的面试题 下面这个程序运行的能num结果是什么? package main import ( "fmt" " ...

  8. EF学习笔记(十) 处理并发

    总目录:ASP.NET MVC5 及 EF6 学习笔记 - (目录整理) 上一篇:EF学习笔记(九):异步处理和存储过程 本篇原文链接:Handling Concurrency Concurrency ...

  9. Java并发编程学习笔记

    Java编程思想,并发编程学习笔记. 一.基本的线程机制 1.定义任务:Runnable接口 线程可以驱动任务,因此需要一种描述任务的方式,这可以由Runnable接口来提供.要想定义任务,只需实现R ...

随机推荐

  1. linux下 signal信号机制的透彻分析与各种实例讲解

    转自:http://blog.sina.com.cn/s/blog_636a55070101vs2d.html 转自:http://blog.csdn.net/tiany524/article/det ...

  2. 正则表达式 (python)

    正则表达式 在正则表达式中,如果直接给出字符,就是精确匹配. 用\d可以匹配一个数字,\w可以匹配一个字母或数字,所以: '00\d'可以匹配'007',但无法匹配'00A': '\d\d\d'可以匹 ...

  3. Path模块部分常用函数解析——NodeJS

    官网地址:https://nodejs.org/api/path.html path.resolve([...paths])# Added in: v0.3.4 参数[...paths]: <S ...

  4. 在Node中使用ES7新特征——async、await

    async与await两个关键字是在ES7中添加的新特征,旨在更加直观的书写异步函数,避免出现callback hell. callback hell是什么? readFileContents(&qu ...

  5. Spring Framework5.0 学习(4)—— 基本概念

    1.0  控制反转(IOC)/依赖注入(DI) 通过依赖注入(DI),对象的依赖关系将由负责协调系统关系中各个对象的第三方组件在创建对象是设定.对象无需自行创建或管理它们的依赖关系——依赖关系将被自动 ...

  6. Intellij IDEA 格式化代码

  7. 【剑指offer】数组中的逆序对

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/mmc_maodun/article/details/27520535 转载请注明出处:http:// ...

  8. UVa 1395 - Slim Span(最小生成树变形)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. Integer类小细节随笔记录

    先看一段简单的代码: Integer v1 = Integer.valueOf(12); Integer v2 = Integer.valueOf(12); Integer v3 = Integer. ...

  10. java和spring 线程池总结

    1. spring 的线程池 ThreadPoolTaskExecutor @Configuration public class ThreadPoolConfig { @Bean("thr ...