没有上司的舞会

题目

Ural大学有N个职员,编号为1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐指数最大。但是,没有职员愿和直接上司一起与会。

输入描述 Input Description

第一行一个整数N。(1<=N<=6000)

接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)

接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。 最后一行输入0,0。

输出描述 Output Description

输出最大的快乐指数。


思路

状态的定义:

f[i][0] 表示上司不参加舞会的最大值

f[i][1] 表示上司参加舞会的最大值

代码

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN = 6005;
int Val[MAXN],Len[MAXN],Deg[MAXN];
int Map[MAXN][300],f[MAXN][2];
void dp(int Aim) {
f[Aim][1] = Val[Aim];
for(int i = 1; i<=Len[Aim]; i++) {
int & Son = Map[Aim][i];
dp(Son);
f[Aim][0] += max(f[Son][0],f[Son][1]);
f[Aim][1] += f[Son][0];
}
}
int main() {
int n;
scanf("%d",&n);
for(int i = 1; i<=n; i++) {
scanf("%d",&Val[i]);
}
while(1) {
int x,y;
if(!x) {
break;
}
scanf("%d%d",&x,&y);
Map[y][++Len[y]] = x;
Deg[x] ++;
}
int Root = 0;
for(int i = 1; i<=n; i++) {
if(!Deg[i]) {
Root = i;
break;
}
}
dp(Root);
printf("%d",max(f[Root][0],f[Root][1]));
return 0;
}

最大利润

题目描述

政府邀请了你在火车站开饭店,但不允许同时在两个相连接的火车站开。任意两个火车站有且只有一条路径,每个火车站最多有50个和它相连接的火车站。 告诉你每个火车站的利润,问你可以获得的最大利润为多少。

输入格式

第一行输入整数N(<=100000),表示有N个火车站,分别用1,2。。。,N来编号。接下来N行,每行一个整数表示每个站点的利润,接下来N-1行描述火车站网络,每行两个整数,表示相连接的两个站点。

输出格式

输出一个整数表示可以获得的最大利润。


思路

首先,输入的图不是一颗树吗?其实是的,一个无向连通图(题目中可能说掉了),随便选一个点当根节点就行。


代码

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN = 100005;
int Val[MAXN],Len[MAXN];
int Vis[MAXN],Deg[MAXN];
int Map[MAXN][55],f[MAXN][2];
void dp(int Aim) {
Vis[Aim] = 1;
f[Aim][0] = 0;
f[Aim][1] = Val[Aim];
for(int i = 1; i<=Len[Aim]; i++) {
int & Son = Map[Aim][i];
if(!Vis[Son]) {
dp(Son);
f[Aim][0] += max(f[Son][0],f[Son][1]);
f[Aim][1] += f[Son][0];
}
}
}
int main() {
int n;
scanf("%d",&n);
for(int i = 1; i<=n; i++) {
scanf("%d",&Val[i]);
}
for(int i = 1; i<n; i++) {
int x,y;
scanf("%d%d",&x,&y);
Map[x][++Len[x]] = y;
Map[y][++Len[y]] = x;
}
dp(1);
printf("%d",max(f[1][0],f[1][1]));
return 0;
}

树形DP(例题)的更多相关文章

  1. 树形dp|无根树转有根树|2015年蓝桥杯生命之树

    2015年蓝桥杯第十题--生命之树(无根树dfs) ①暴力解法:枚举子集(选点) + dfs判断连通性(题目要求连通)满足上面两个条件下找出最大值权值和 ②dfs无根树转有根树,递归找最优 先学习无根 ...

  2. [提升性选讲] 树形DP进阶:一类非线性的树形DP问题(例题 BZOJ4403 BZOJ3167)

    转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7337179.html 树形DP是一种在树上进行的DP相对比较难的DP题型.由于状态的定义多种多样,因此解法也五 ...

  3. [DP之树形DP]

    树形dp出了应该还是比计数dp要简单的 因为很好可以看出来 常用的是一个F记录子树内的 一个G记录子树外的 还有一种就是有环的做过要用状压搞一下 不说这么多直接上例题 [HAOI2015]T1 经典的 ...

  4. 『战略游戏 最大利润 树形DP』

    通过两道简单的例题,我们来重新认识树形DP. 战略游戏(luoguP1026) Description Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题.他要 ...

  5. 『没有上司的舞会 树形DP』

    树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...

  6. 树形dp 入门

    今天学了树形dp,发现树形dp就是入门难一些,于是好心的我便立志要发一篇树形dp入门的博客了. 树形dp的概念什么的,相信大家都已经明白,这里就不再多说.直接上例题. 一.常规树形DP P1352 没 ...

  7. 【BZOJ1040】[ZJOI2008]骑士 树形DP

    [BZOJ1040][ZJOI2008]骑士 Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情 ...

  8. 树形DP初探•总结

    这几天,我自学了基础的树形DP,在此给大家分享一下我的心得.   首先,树形DP这种题主要就是解决有明确分层次且无环的树上动态规划的题.这种题型一般(注意只是基础.普通的情况下)用深度优先搜索来解决实 ...

  9. CH5402 选课【树形DP】【背包】

    5402 选课 0x50「动态规划」例题 描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了 N(N≤300) 门的选修课程,每个学生可选课程的数量 M 是 ...

  10. 动态规划专题(二)——树形DP

    前言 \(DP\)这东西真的是博大精深啊...... 简介 树形\(DP\),顾名思义,就是在树上操作的\(DP\),一般可以用\(f_i\)表示以编号为\(i\)的节点为根的子树中的最优解. 转移的 ...

随机推荐

  1. 图解:TCP协议中的三次握手和四次挥手

    建立TCP需要三次握手才能建立,而断开连接则需要四次握手.整个过程如下图所示: 先来看看如何建立连接的. 首先Client端发送连接请求报文,Server段接受连接后回复ACK报文,并为这次连接分配资 ...

  2. 贴现力 (force of discount)

    一.定义 用贴现函数a-1(t) 代替累积函数,在 t 时刻的贴现力为 增加一个负号使得贴现力为正. 二.重要的公式

  3. linux配置sudo

    编辑/etc/sudoers或者直接使用root用户运行visodu 添加如下两行:oracle  ALL=(ALL)       NOPASSWD: ALLoinstall        ALL=( ...

  4. SAP C/4HANA与人工智能和增强现实(AR)技术结合的又一个创新案例

    今天这篇迟到的文章,来自我的同事Aviva. 去年SAP C/4HANA发布之后,SAP的从业者们可能或多或少都读过一些来自SAP官方渠道,比如微信公众号"SAP天天事"发布的一些 ...

  5. Oracle表空间、段、区和块简述

    本文转载自:http://blog.itpub.net/17203031/viewspace-682003/ 在Oracle学习过程中,存储结构,表段区块可能是每个初学者都要涉及到的概念.表空间.段. ...

  6. GPU 与CPU的作用协调,工作流程、GPU整合到CPU得好处

    http://blog.csdn.net/maopig/article/details/6803141 在不少人的心目中,显卡最大的用途可能就只有两点——玩游戏.看电影,除此之外,GPU并没有其他的作 ...

  7. 页面间传递前端请求参数和获取参数:Model model,HttpServletRequest request, ModelMap map参数使用与区别

    Model model, HttpServletRequest request, ModelMap map声明变量 一.下面的方法是需要将请求发过来的数据(或者说参数)传递到重定向的页面/转发的页面的 ...

  8. java.sql.date和java.util.date的区别和转换

    不同点:java.util.Date是在除了SQL语句的情况下面使用的.java.sql.Date是针对SQL语句使用的,它只包含日期而没有时间部分java.util.Date 是 java.sql. ...

  9. 三、Hadoop 的 API

    1.环境搭建 <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop- ...

  10. iOS11、iPhone X、Xcode9 适配指南

    更新iOS11后,发现有些地方需要做适配,整理后按照优先级分为以下三类: 1.单纯升级iOS11后造成的变化: 2.Xcode9 打包后造成的变化: 3.iPhoneX的适配 一.单纯升级iOS11后 ...