树形DP(例题)
没有上司的舞会
题目
Ural大学有N个职员,编号为1~N。他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。每个职员有一个快乐指数。现在有个周年庆宴会,要求与会职员的快乐指数最大。但是,没有职员愿和直接上司一起与会。
输入描述 Input Description
第一行一个整数N。(1<=N<=6000)
接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)
接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。 最后一行输入0,0。
输出描述 Output Description
输出最大的快乐指数。
思路
状态的定义:
f[i][0] 表示上司不参加舞会的最大值
f[i][1] 表示上司参加舞会的最大值
代码
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN = 6005;
int Val[MAXN],Len[MAXN],Deg[MAXN];
int Map[MAXN][300],f[MAXN][2];
void dp(int Aim) {
f[Aim][1] = Val[Aim];
for(int i = 1; i<=Len[Aim]; i++) {
int & Son = Map[Aim][i];
dp(Son);
f[Aim][0] += max(f[Son][0],f[Son][1]);
f[Aim][1] += f[Son][0];
}
}
int main() {
int n;
scanf("%d",&n);
for(int i = 1; i<=n; i++) {
scanf("%d",&Val[i]);
}
while(1) {
int x,y;
if(!x) {
break;
}
scanf("%d%d",&x,&y);
Map[y][++Len[y]] = x;
Deg[x] ++;
}
int Root = 0;
for(int i = 1; i<=n; i++) {
if(!Deg[i]) {
Root = i;
break;
}
}
dp(Root);
printf("%d",max(f[Root][0],f[Root][1]));
return 0;
}
最大利润
题目描述:
政府邀请了你在火车站开饭店,但不允许同时在两个相连接的火车站开。任意两个火车站有且只有一条路径,每个火车站最多有50个和它相连接的火车站。 告诉你每个火车站的利润,问你可以获得的最大利润为多少。
输入格式:
第一行输入整数N(<=100000),表示有N个火车站,分别用1,2。。。,N来编号。接下来N行,每行一个整数表示每个站点的利润,接下来N-1行描述火车站网络,每行两个整数,表示相连接的两个站点。
输出格式:
输出一个整数表示可以获得的最大利润。
思路
首先,输入的图不是一颗树吗?其实是的,一个无向连通图(题目中可能说掉了),随便选一个点当根节点就行。
代码
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN = 100005;
int Val[MAXN],Len[MAXN];
int Vis[MAXN],Deg[MAXN];
int Map[MAXN][55],f[MAXN][2];
void dp(int Aim) {
Vis[Aim] = 1;
f[Aim][0] = 0;
f[Aim][1] = Val[Aim];
for(int i = 1; i<=Len[Aim]; i++) {
int & Son = Map[Aim][i];
if(!Vis[Son]) {
dp(Son);
f[Aim][0] += max(f[Son][0],f[Son][1]);
f[Aim][1] += f[Son][0];
}
}
}
int main() {
int n;
scanf("%d",&n);
for(int i = 1; i<=n; i++) {
scanf("%d",&Val[i]);
}
for(int i = 1; i<n; i++) {
int x,y;
scanf("%d%d",&x,&y);
Map[x][++Len[x]] = y;
Map[y][++Len[y]] = x;
}
dp(1);
printf("%d",max(f[1][0],f[1][1]));
return 0;
}
树形DP(例题)的更多相关文章
- 树形dp|无根树转有根树|2015年蓝桥杯生命之树
2015年蓝桥杯第十题--生命之树(无根树dfs) ①暴力解法:枚举子集(选点) + dfs判断连通性(题目要求连通)满足上面两个条件下找出最大值权值和 ②dfs无根树转有根树,递归找最优 先学习无根 ...
- [提升性选讲] 树形DP进阶:一类非线性的树形DP问题(例题 BZOJ4403 BZOJ3167)
转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7337179.html 树形DP是一种在树上进行的DP相对比较难的DP题型.由于状态的定义多种多样,因此解法也五 ...
- [DP之树形DP]
树形dp出了应该还是比计数dp要简单的 因为很好可以看出来 常用的是一个F记录子树内的 一个G记录子树外的 还有一种就是有环的做过要用状压搞一下 不说这么多直接上例题 [HAOI2015]T1 经典的 ...
- 『战略游戏 最大利润 树形DP』
通过两道简单的例题,我们来重新认识树形DP. 战略游戏(luoguP1026) Description Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题.他要 ...
- 『没有上司的舞会 树形DP』
树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...
- 树形dp 入门
今天学了树形dp,发现树形dp就是入门难一些,于是好心的我便立志要发一篇树形dp入门的博客了. 树形dp的概念什么的,相信大家都已经明白,这里就不再多说.直接上例题. 一.常规树形DP P1352 没 ...
- 【BZOJ1040】[ZJOI2008]骑士 树形DP
[BZOJ1040][ZJOI2008]骑士 Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情 ...
- 树形DP初探•总结
这几天,我自学了基础的树形DP,在此给大家分享一下我的心得. 首先,树形DP这种题主要就是解决有明确分层次且无环的树上动态规划的题.这种题型一般(注意只是基础.普通的情况下)用深度优先搜索来解决实 ...
- CH5402 选课【树形DP】【背包】
5402 选课 0x50「动态规划」例题 描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了 N(N≤300) 门的选修课程,每个学生可选课程的数量 M 是 ...
- 动态规划专题(二)——树形DP
前言 \(DP\)这东西真的是博大精深啊...... 简介 树形\(DP\),顾名思义,就是在树上操作的\(DP\),一般可以用\(f_i\)表示以编号为\(i\)的节点为根的子树中的最优解. 转移的 ...
随机推荐
- linux命令整理
Linux系统命令 1. ls 查看某个 目录下 所有文件的大小总和 ls -lR| awk 'BEGIN{size=0;} /^[-l]/{size+=$5;print $0;} END{print ...
- 网络分析 ANP
在许多实际问题中,各层次内部元素往往是依赖的. 低层元素对高层元素亦有支配作用,即存在反馈. 此时系统的结构更类似于网络结构.网络分析法正是适应这种需要,由AHP延伸发展得到的系统决策方法. AN ...
- npm创建react项目
1:win+R 输入cmd ,打开cmd面板 2:安装cnpm npm install -g cnpm --registry=https://registry.npm.taobao.org 3:安装r ...
- windows server 2003安装Oracle webtier 32位因环境变量原因报错
在服务中启动Oracle processer manager时报错:错误1053:服务没有及时响应启动或控制请求 原因是本系统还安装过BI和Oracle数据库等产品 解决方法:删除和本次安装无关的环境 ...
- 经典优秀屏幕截图录像工具FastStone Capture推荐
FastStone Capture (FSCapture) 是经典好用的屏幕截图软件,还具有图像编辑和屏幕录制两大功能. FastStone Capture 主要功能 包括:1.截图功能(可以捕捉:活 ...
- BUG Review:关于getting 'android:xxx' attribute: attribute is not a string value的问题及解决方法
我们在使用Android Studio开发完应用程序后,都要将打好的apk安装包上传到各大应用市场,但是有时候上传时应用市场会出现提交的安装包不能通过应用市场的aapt解析而被打回的情况. 他们使用a ...
- Spring AOP 的切点切在Controller上没有起作用的问题。
做下笔记,以防忘记. 在Spring MVC 中使用面向切面编程,感觉所有的配置.切面.切点的编写都没有写错,但是当切点切在@Controller注解的类的方法上时就不起作用.当切点切在的其他的非@C ...
- C#利用NPOI处理excel的类 NPOIHelper.cs
个人的NPOIHelp类,包括datatable导出到excel,dataset导出到excel,excel导入到datatable,excel导入到dataset, 更新excel中的数据,验证导入 ...
- ECMAScript6 Generator & async
Generator Generator函数是一个状态机,执行后返回一个遍历器对象.调用遍历器对象的.next()函数获取下一个状态. Generator是一个普通的函数,函数内部使用yield关键字定 ...
- 【转】关于HTTP中文翻译的讨论
http://www.ituring.com.cn/article/1817 讨论参与者共16位: 图灵谢工 杨博 陈睿杰 贾洪峰 李锟 丁雪丰 郭义 梁涛 吴玺喆 邓聪 胡金埔 臧秀涛 张伸 图钉派 ...