Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4839   Accepted: 2350

Description

There is a square wall which is made of n*n small square bricks. Some bricks are white while some bricks are yellow. Bob is a painter and he wants to paint all the bricks yellow. But there is something wrong with Bob's brush. Once he uses this brush to paint brick (i, j), the bricks at (i, j), (i-1, j), (i+1, j), (i, j-1) and (i, j+1) all change their color. Your task is to find the minimum number of bricks Bob should paint in order to make all the bricks yellow.

Input

The
first line contains a single integer t (1 <= t <= 20) that
indicates the number of test cases. Then follow the t cases. Each test
case begins with a line contains an integer n (1 <= n <= 15),
representing the size of wall. The next n lines represent the original
wall. Each line contains n characters. The j-th character of the i-th
line figures out the color of brick at position (i, j). We use a 'w' to
express a white brick while a 'y' to express a yellow brick.

Output

For
each case, output a line contains the minimum number of bricks Bob
should paint. If Bob can't paint all the bricks yellow, print 'inf'.

Sample Input

2
3
yyy
yyy
yyy
5
wwwww
wwwww
wwwww
wwwww
wwwww

Sample Output

0
15

Source

/**
题意:根据给出的图,问有多少种方法使得变为全‘y’
做法:高斯消元 建一个n*n的矩阵
**/
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#define maxn 250
using namespace std;
int mmap[maxn][maxn];
int x[maxn];
int equ,val;
char ch[][];
int free_x[maxn];
int gcd(int a,int b)
{
if(b == ) return a;
return gcd(b,a%b);
}
int Lcm(int a,int b)
{
return a/gcd(a,b)*b;
}
int Guess()
{
int lcm;
int ta;
int tb;
int max_r;
int k;
int col;
col = ;
for(k = ; k<equ&&col < val; k++,col++)
{
max_r = k;
for(int i=k+; i<equ; i++)
{
if(abs(mmap[i][col]) > abs(mmap[max_r][col]))
{
max_r = i;
}
}
if(mmap[max_r][col] == )
{
k--;
continue;
}
if(max_r != k)
{
for(int i=col; i<val+; i++)
{
swap(mmap[max_r][i],mmap[k][i]);
}
}
for(int i=k+; i<equ; i++)
{
if(mmap[i][col] != )
{
for(int j=col; j<val+; j++)
{
mmap[i][j] ^= mmap[k][j];
}
}
}
}
for(int i=k; i<equ; i++)
{
if(mmap[i][col] != ) return -;
}
for(int i=val-; i>=; i--)
{
x[i] = mmap[i][val];
for(int j=i+; j<val; j++)
{
x[i] ^= (mmap[i][j] & x[j]);
}
}
return ;
}
void init(int n)
{
memset(x,,sizeof(x));
memset(mmap,,sizeof(mmap));
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
int tt = i * n +j;
mmap[tt][tt] = ;
if(i > ) mmap[(i-)*n+j][tt] = ;
if(i < n-) mmap[(i+)*n+j][tt] = ;
if(j > ) mmap[i*n + j - ][tt] = ;
if(j < n-) mmap[i*n + j + ][tt] = ;
}
}
}
void solve(int tt)
{
int res = Guess();
if(res == -) printf("inf\n");
else if(res == )
{
int ans = ;
for(int i=; i<=tt; i++)
{
ans += x[i];
}
printf("%d\n",ans);
return;
}
else
{
int ans = 0x3f3f3f3f;
int tot = (<<res);
for(int i=; i<tot; i++)
{
int cnt = ;
for(int j=; j<res; j++)
{
if(i &(<<j))
{
x[free_x[j]] = ;
cnt++;
}
else x[free_x[j]] = ;
}
for(int j=val-tt-; j>=; j--)
{
int k;
for( k=j; k<val; k++)
if(mmap[j][k]) break;
x[k] = mmap[j][val];
for(int l=k+; l < val; l++)
if(mmap[j][l]) x[k] ^= x[l];
cnt += x[k]; }
ans = min(ans,cnt);
}
printf("%d\n",ans);
}
return;
}
int main()
{
//#ifndef ONLINE_JUDGE
// freopen("in.txt","r",stdin);
//#endif // ONLINE_JUDGE
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
char c[];
init(n);
int tt = n*n;
equ = val = tt;
for(int i=; i<n; i++)
{
scanf("%s",c);
for(int j=; j<n; j++)
{
if(c[j] == 'y') mmap[i*n+j][tt] = ;
else mmap[i*n+j][tt] = ; }
}
solve(tt);
}
return ;
}

POJ-1681的更多相关文章

  1. POJ 1222 POJ 1830 POJ 1681 POJ 1753 POJ 3185 高斯消元求解一类开关问题

    http://poj.org/problem?id=1222 http://poj.org/problem?id=1830 http://poj.org/problem?id=1681 http:// ...

  2. POJ 1681 (开关问题+高斯消元法)

    题目链接: http://poj.org/problem?id=1681 题目大意:一堆格子,或白或黄.每次可以把一个改变一个格子颜色,其上下左右四个格子颜色也改变.问最后使格子全部变黄,最少需要改变 ...

  3. OpenJudge 2813 画家问题 / Poj 1681 Painter's Problem

    1.链接地址: http://bailian.openjudge.cn/practice/2813 http://poj.org/problem?id=1681 2.题目: 总时间限制: 1000ms ...

  4. POJ 1681 Painter's Problem(高斯消元+枚举自由变元)

    http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...

  5. POJ 1681 Painter's Problem 【高斯消元 二进制枚举】

    任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total ...

  6. poj 1681 Painter&#39;s Problem(高斯消元)

    id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...

  7. poj 1681 Painter's Problem

    Painter's Problem 题意:给一个n*n(1 <= n <= 15)具有初始颜色(颜色只有yellow&white两种,即01矩阵)的square染色,每次对一个方格 ...

  8. poj 1681(Gauss 消元)

    Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5875   Accepted: 2825 ...

  9. POJ 1681 Painter's Problem (高斯消元)

    题目链接 题意:有一面墙每个格子有黄白两种颜色,刷墙每次刷一格会将上下左右中五个格子变色,求最少的刷方法使得所有的格子都变成yellow. 题解:通过打表我们可以得知4*4的一共有4个自由变元,那么我 ...

  10. POJ 1681 Painter's Problem (高斯消元 枚举自由变元求最小的步数)

    题目链接 题意: 一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右 都将改变颜色): 给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要 ...

随机推荐

  1. Uncaught (in promise) DOMException: The play() request was interrupted by a call to pause().

    解决方法: audio.load() let playPromise = audio.play() if (playPromise !== undefined) { playPromise.then( ...

  2. SELECT LAST_INSERT_ID() 的使用和注意事项

    SELECT LAST_INSERT_ID() 的使用和注意事项 尊重个人劳动成果,转载请注明出处: http://blog.csdn.net/czd3355/article/details/7130 ...

  3. noip模拟赛 但有用

    题目描述 给定一个 n ∗ m 个矩阵,矩阵中每个数都是 [1, 12] 内的整数.你可以执行下列两个操作任意多次: • 指定一行,将该行所有数字 +1. • 指定一列,将该列所有数字 +1. 如果执 ...

  4. SPOJ - DETER3:Find The Determinant III (求解行列式)

    Find The Determinant III 题目链接:https://vjudge.net/problem/SPOJ-DETER3 Description: Given a NxN matrix ...

  5. JupyterHub的安装与配置——让Jupyter支持多用户

    1.下载anaconda 打开https://www.continuum.io/downloads,找到自己要的版本 如:https://repo.anaconda.com/archive/Anaco ...

  6. JAVA 枚举单例模式

     1.枚举单例模式的实现 public enum Singleton { INSTANCE { @Override protected void read() { System.out.println ...

  7. Idrac6 to manage dell server

    最近idrac6挂了,java已经升级了 1.安装firefox浏览器,只有火狐是支持idrac最好的 2.安装JDK 3.配置configure java, 4.添加security,edit si ...

  8. springboot-部署到centos7

    环境 系统:centos7 64位 安装jdk 第一步:下载 先进入官网:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-do ...

  9. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  10. 图论:Floyd-多源最短路、无向图最小环

    在最短路问题中,如果我们面对的是稠密图(十分稠密的那种,比如说全连接图),计算多源最短路的时候,Floyd算法才能充分发挥它的优势,彻彻底底打败SPFA和Dijkstra 在别的最短路问题中都不推荐使 ...