caffe中使用crop_size剪裁训练图片
- layer {
- name: "data"
- type: "Data"
- top: "data"
- top: "label"
- include {
- phase: TRAIN
- }
- transform_param {
- mirror: true
- crop_size: 600
- mean_file: "examples/images/imagenet_mean.binaryproto"
- }
- data_param {
- source: "examples/images/train_lmdb"
- batch_size: 256
- backend: LMDB
- }
- }
- layer {
- name: "data"
- type: "Data"
- top: "data"
- top: "label"
- include {
- phase: TEST
- }
- transform_param {
- mirror: false
- crop_size: 600
- mean_file: "examples/images/imagenet_mean.binaryproto"
- }
- data_param {
- source: "examples/images/val_lmdb"
- batch_size: 50
- backend: LMDB
- }
- }
从上面的 数据层的定义,看得出用了镜像和crop_size,还定义了 mean_file。
利用crop_size这种方式可以剪裁中心关注点和边角特征,mirror可以产生镜像,弥补小数据集的不足.
这里要重点讲一下crop_size在训练层与测试层的区别:
首先我们需要了解mean_file和crop_size没什么大关系。mean_file是根据训练集图片制作出来的,crop_size是对训练集图像进行裁剪,两个都是对原始的训练集图像进行处理。如果原始训练图像的尺寸大小为800*800,crop_size的图片为600*600,则mean_file与crop_size的图片均为800*800的图像集。
在caffe中,如果定义了crop_size,那么在train时会对大于crop_size的图片进行随机裁剪,而在test时只是截取中间部分(详见/caffe/src/caffe/data_transformer.cpp):
- //We only do random crop when we do training.
- if (phase_ == TRAIN) {
- h_off = Rand(datum_height - crop_size + 1);
- w_off = Rand(datum_width - crop_size + 1);
- } else {
- h_off = (datum_height - crop_size) / 2;
- w_off = (datum_width - crop_size) / 2;
- }
- }
从上述的代码可以看出,如果我们输入的图片尺寸大于crop_size,那么图片会被裁剪。当 phase 模式为 TRAIN 时,裁剪是随机进行裁剪,而当为TEST 模式时,其裁剪方式则只是裁剪图像的中间区域。
下面是我在网上找到的自己进行图像裁剪的程序:
可对照给出的网址进行详细阅读:http://blog.csdn.NET/u011762313/article/details/48343799
我们可以手动将图片裁剪并导入pycaffe中,这样能够提高识别率(pycaffe利用caffemodel进行分类中:进行分类
这一步改为如下):
- #记录分类概率分布
- pridects = np.zeros((1, CLASS_NUM))
- # 图片维度(高、宽)
- img_shape = np.array(img.shape)
- # 裁剪的大小(高、宽)
- crop_dims = (32, 96)
- crop_dims = np.array(crop_dims)
- # 这里使用的图片高度全部固定为32,长度可变,最小为96
- # 裁剪起点为0,终点为w_range
- w_range = img_shape[1] - crop_dims[1]
- # 从左往右剪一遍,再从右往左剪一遍,步长为96/4=24
- for k in range(0, w_range + 1, crop_dims[1] / 4) + range(w_range, 1, -crop_dims[1] / 4):
- # 裁剪图片
- crop_img = img[:, k:k + crop_dims[1], :]
- # 数据输入、预处理
- net.blobs['data'].data[...] = transformer.preprocess('data', crop_img)
- # 前向迭代,即分类
- out = net.forward()
- # 每一次分类,概率分布叠加
- pridects += out['prob']
- # 取最大的概率分布为最终结果
- pridect = pridects.argmax()
- caffe中提供了过采样的方法(oversample),详见/caffe/python/caffe/io.py,裁剪的是图片中央、4个角以及镜像共10张图片。
caffe中使用crop_size剪裁训练图片的更多相关文章
- (原)torch和caffe中的BatchNorm层
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6015990.html BatchNorm具体网上搜索. caffe中batchNorm层是通过Batc ...
- caffe学习--使用caffe中的imagenet对自己的图片进行分类训练(超级详细版) -----linux
http://blog.csdn.net/u011244794/article/details/51565786 标签: caffeimagenet 2016-06-02 12:57 9385人阅读 ...
- Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- Caffe学习系列(12):训练和测试自己的图片--linux平台
Caffe学习系列(12):训练和测试自己的图片 学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...
- CAFFE中训练与使用阶段网络设计的不同
神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使 ...
- caffe 中如何打乱训练数据
第一: 可以选择在将数据转换成lmdb格式时进行打乱: 设置参数--shuffle=1:(表示打乱训练数据) 默认为0,表示忽略,不打乱. 打乱的目的有两个:防止出现过分有规律的数据,导致过拟合或者不 ...
- 浅谈caffe中train_val.prototxt和deploy.prototxt文件的区别
本文以CaffeNet为例: 1. train_val.prototxt 首先,train_val.prototxt文件是网络配置文件.该文件是在训练的时候用的. 2.deploy.prototxt ...
- 在caffe中使用hdf5的数据
caffe默认使用的数据格式为lmdb文件格式,它提供了把图片转为lmdb文件格式的小程序,但是呢,我的数据为一维的数据,我也要分类啊,那我怎么办?肯定有办法可以转为lmdb文件格式的,我也看了一些源 ...
随机推荐
- <cfenv>(fenv.h) _c++11
头文件 <cfenv>(fenv.h) c++11 浮点环境 这个头文件声明了一系列的函数和宏去访问浮点环境,以及特殊的类型. 浮点环境维护一系列的状态标志(status flags)和具 ...
- 使用flask_limiter设定API配额
前言 闲来无事,突然想到了以前做过的关于后台API安全方面的事,关于接口访问配额的设置,flask有没有很好的库支持呢?一找还真有!主要是对照了库的官方文档自己写了下dome,以供参考. # -*- ...
- 【radio-group、radio】 单选项组件说明
radio-group组件是包裹radio组件的容器 原型: <radio-group bindchange="[EventHandle]"> <radio .. ...
- Python全栈 MongoDB 数据库(Mongo、 正则基础、一篇通)
终端命令: 在线安装: sudo apt-get install mongodb 默认安装路径 : /var/lib/mong ...
- vue中如何实现pdf文件预览?
今天产品提出一个优化的需求,就是之前我们做的图片展示就是一个img标签搞定,由于我们做的是海外后台管理系统,那边的人上传的文件时pdf格式,vue本事是不支持这种格式文件展示的,于是就google搜索 ...
- (python)leetcode刷题笔记05 Longest Palindromic Substring
5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You ...
- Netcore logging config
- CNN之间的计算
参考内容 1.网易云课堂微专业——深度学习—04第一周:http://mooc.study.163.com/smartSpec/detail/1001319001.htm 2.CNN基础介绍:http ...
- 基于gulp的前端自动化开发构建
就前端的发展而言会越来越朝着后端的标准化靠近,后端的工程化以及模块化都很成熟.基于这样一个思路,开始探索如何优化目前的开发流程.而使用的工具就是gulp. 个人觉得gulp比较webpack更为简单实 ...
- centos设置时间同步
1.安装ntpdate #yum install ntpdate 2. #cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime #ntpdate ...