题目描述

L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:1:工厂i距离工厂1的距离Xi(其中X1=0); 2:工厂i目前已有成品数量Pi; 3:在工厂i建立仓库的费用Ci;请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。

输入

第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。

输出

仅包含一个整数,为可以找到最优方案的费用。

样例输入

3
0 5 10
5 3 100
9 6 10

样例输出

32


题解

斜率优化dp

设f[i]为i处建仓库时前i个位置的最小总代价。

那么就有f[i]=f[j]+p[i]+∑(p[k]*(x[i]-x[k])) (j+1≤k≤i)

=f[j]+p[i]+x[i]*∑p[k]-∑(p[k]*x[k]) (j+1≤k≤i)

=f[j]+p[i]+x[i]*(sum[i]-sum[j])-(t[i]-t[j])

其中sum是p的前缀和,t是p*x的前缀和。

移项得f[j]+t[j]=x[i]*sum[j]+(f[i]+t[i]-x[i]*sum[i]-p[i])。

这是y=kx+b的形式,且要求的是b的最小值,于是维护一个下凸包即可。

#include <cstdio>
#define y(i) (f[i] + t[i])
#define x(i) sum[i]
int q[1000010] , l , r;
long long xi[1000010] , pi[1000010] , ci[1000010] , f[1000010] , sum[1000010] , t[1000010];
int main()
{
int n , i;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%lld%lld%lld" , &xi[i] , &pi[i] , &ci[i]);
sum[i] = sum[i - 1] + pi[i];
t[i] = t[i - 1] + pi[i] * xi[i];
}
for(i = 1 ; i <= n ; i ++ )
{
while(l < r && y(q[l + 1]) - y(q[l]) < (x(q[l + 1]) - x(q[l])) * xi[i]) l ++ ;
f[i] = f[q[l]] + (sum[i] - sum[q[l]]) * xi[i] - t[i] + t[q[l]] + ci[i];
while(l < r && (y(i) - y(q[r])) * (x(q[r]) - x(q[r - 1])) < (x(i) - x(q[r])) * (y(q[r]) - y(q[r - 1]))) r -- ;
q[++r] = i;
}
printf("%lld\n" , f[n]);
return 0;
}

【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp的更多相关文章

  1. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  2. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  3. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  4. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  5. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  6. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  7. [ZJOI2007] 仓库建设 - 斜率优化dp

    大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...

  8. [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)

    Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...

  9. 【bzoj1096】仓库建设 斜率优化dp

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1096 [题解] 设输入的三个数组为a,b,c sumb维护b数组的前缀和,sumab维护a ...

随机推荐

  1. javascript array.property.slice.call

    function foo() { //var var1=Array.prototype.slice.call(arguments); var var1=[].slice.call(arguments) ...

  2. P1294 高手去散步

    P1294 高手去散步 题目背景 高手最近谈恋爱了.不过是单相思.“即使是单相思,也是完整的爱情”,高手从未放弃对它的追求.今天,这个阳光明媚的早晨,太阳从西边缓缓升起.于是它找到高手,希望在晨读开始 ...

  3. 一个小白的测试环境docker化之路

    本文来自网易云社区 作者:叶子 学习docker搭建测试环境断断续续也有三个多月了,希望记录一下这个过程.常言道,总结过去,展望未来嘛~文章浅显,还望各位大神路过轻拍. 按照国际惯例,先说一下背景: ...

  4. 纯净CentOS安装PHP网站环境

    一.MySQL数据库 安装mysql: yum install mysql mysql-server 启动mysql: /etc/init.d/mysqld start 或  service mysq ...

  5. Visual Studio Code——PHP Debug扩展

    最近在使用PHP开发,使用了很多IDE,发现都不是很顺手,之前一直都在使用Sublime Text,但是作为一个爱折腾的人,当我发现VS Code以后觉得很是很适合自己的编程需要的.配置过程中遇到了一 ...

  6. spark dataset join 使用方法java

    dataset<Row> df1,df2,df3 //该方法可以执行成功 df3= df1.join(df2,"post_id").selectExpr("h ...

  7. Redis4.0支持的新功能说明

    本文以华为云DCS for Redis版本为例,介绍Redis4.0的新功能.文章转载自华为云帮助中心. 与Redis3.x版本相比,DCS的Redis4.x以上版本,除了开源Redis增加的特性之外 ...

  8. 【QT】宏

    宏 Q_CORE_EXPORT _CORE_EXPORT 其实是一个宏,用来说明这是一个动态库导出类.QT是个跨平台的库,而不同的操作系统,不同的编译器,对动态库的导出说明是不一样的,比如,在wind ...

  9. 【RL系列】Multi-Armed Bandit笔记——UCB策略与Gradient策略

    本篇主要是为了记录UCB策略与Gradient策略在解决Multi-Armed Bandit问题时的实现方法,涉及理论部分较少,所以请先阅读Reinforcement Learning: An Int ...

  10. 基于angular+bower+glup的webapp

    一:bower介绍 1:全局安装安装bower cnpm i -g bower bower常用指令: bower init //初始化文件 bower install bower uninstall ...