Sightseeing
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10004   Accepted: 3523

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

  • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Sample Output

3

这题我主要用来学习如何写dijkstar  我习惯写spfa但是容易被卡
这题主要是改变松弛
更新最短路径的适合顺便更新次短路径
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
typedef long long LL;
const int maxn = 1e5 + ;
const int mod = 1e9 + ;
const int INF = 2e9 + ;
int t, n, m, tot;
int head[], d[][], cnt[][], vis[][];
struct node {
int v, w, next;
} edge[maxn];
void init() {
tot = ;
memset(head, -, sizeof(head));
}
void add(int u, int v, int w) {
edge[tot].v = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
}
struct node1 {
int v, p, d;
node1(int v, int d, int p): v(v), d(d), p(p) {}
bool operator <(const node1 & a ) const {
return d>a.d;
}
};
void dijkstar(int st) {
memset(vis, , sizeof(vis));
memset(cnt, , sizeof(cnt));
for (int i = ; i <= n ; i++) d[i][] = d[i][] = INF;
priority_queue<node1>q;
d[st][] = , cnt[st][] = ;
q.push(node1(st, , ));
while(!q.empty()) {
node1 t = q.top();
q.pop();
int u = t.v, p = t.p;
if (vis[u][p]) continue;
vis[u][p] = ;
for (int i = head[u] ; ~i ; i = edge[i].next) {
int v = edge[i].v, w = edge[i].w;
if (d[v][] > d[u][p] + w) {
d[v][] = d[v][];
cnt[v][] = cnt[v][];
d[v][] = d[u][p] + w;
cnt[v][] = cnt[u][p];
q.push(node1(v, d[v][], ));
q.push(node1(v, d[v][], ));
} else if (d[v][] == d[u][p] + w) cnt[v][] += cnt[u][p];
else if (d[v][] > d[u][p] + w) {
d[v][] = d[u][p] + w;
cnt[v][] = cnt[u][p];
q.push(node1(v,d[v][],));
} else if (d[v][] == d[u][p] + w) cnt[v][] += cnt[u][p];
}
}
}
int main() {
scanf("%d", &t);
while(t--) {
init();
scanf("%d%d", &n, &m);
for (int i = ; i < m ; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
int st, ed;
scanf("%d%d", &st, &ed);
dijkstar(st);
if (d[ed][] + == d[ed][]) printf("%d\n", cnt[ed][] + cnt[ed][]);
else printf("%d\n", cnt[ed][]);
}
return ;
}

Sightseeing(dijlstar) 计算最短路和次短路的条数的更多相关文章

  1. 最短路和次短路的条数(dijstra算法或spfa算法)POJ3463

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  2. hdu1688(dijkstra求最短路和次短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题意:第k短路,这里要求的是第1短路(即最短路),第2短路(即次短路),以及路径条数,最后如果最 ...

  3. HDU 1688 Sightseeing&HDU 3191 How Many Paths Are There(Dijkstra变形求次短路条数)

    Sightseeing Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  4. poj 3463 Sightseeing( 最短路与次短路)

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  5. POJ---3463 Sightseeing 记录最短路和次短路的条数

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9247   Accepted: 3242 Descr ...

  6. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  7. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

  8. poj 3463 Sightseeing(次短路+条数统计)

    /* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...

  9. HDU 1688 Sightseeing 【输出最短路+次短路条数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题目大意:给n个点,m条有向边.再给出起点s, 终点t.求出s到t的最短路条数+次短路条数. 思 ...

随机推荐

  1. 为什么说session依赖cookie,以及cookie的常用知识

    session的用法 session在Flask中通常用做设置某些页面的权限,比如某些页面必须要登录才可以看到,登录的信息或标志就放到session中.它的使用过程如下: 在整个flask工程的启动文 ...

  2. leetcode-三数之和(java)

     三数之和     给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组. 注意:答案中不可 ...

  3. Hexo 博客 之 腾讯云部署过程

    写在前面 Hexo 博客搭好了有差不多两周时间了,这期间走了很多弯路,跳了很多坑.一些坑自己 bing 到了答案,找到了解决方法,一些坑则是自己摸索出来的解决方法.现在准备写几篇关于搭建流程.搭建过程 ...

  4. java并发总览

  5. Simple Pipelined Function

    SELECT * FROM TABLE(PKG_TEST.FN_DIC_DB_TAB) CREATE OR REPLACE PACKAGE PKG_TEST IS   TYPE OBJ_DICDB_R ...

  6. NFC学习总结

    NFC 学习总结 1.NFC 的基本概念 NFC 是 Near FieldCommunication 的缩写,即距离无线通信技术.由飞利浦公司和索尼公司共同开发的NFC 是一种非接触式识别和互联技术, ...

  7. c#程序的config文件问题

    1.vshost.exe.config和app.config两个文件可不要,但exe.config文件不可少. 2.但是app.config最好也要修改了,每次重新生成程序的时候.exe.cmonfi ...

  8. Window命令行工具操作文件

    1,cd 命令用来切换目录 2,mkdir用来创建文件夹 3,rmdir用来删除空文件夹 4,创建指定类型的文件 type nul>"文件名和后缀" 5,打开指定文件用sta ...

  9. 【.NET】- async await 异步编程

    为什么需要异步,异步对可能起阻止作用的活动(例如,应用程序访问 Web 时)至关重要. 对 Web 资源的访问有时很慢或会延迟. 如果此类活动在同步过程中受阻,则整个应用程序必须等待. 在异步过程中, ...

  10. try-with-resources语句

    try-with-resources语句是一种声明了一种或多种资源的try语句.资源是指在程序用完了之后必须要关闭的对象.try-with-resources语句保证了每个声明了的资源在语句结束的时候 ...