胡扯两句——CDQ分治
之前听大神讲过CDQ分治大概是个什么东西,但是一直还没有真正去搞过。今天稍微看了一下,写点自己的理解。
首先CDQ分治有两个条件。
条件1:可以分成两个独立互不影响的问题(这里的“独立”是指将前面区间的影响处理掉后,后面与前面都成为了新的相同问题)
条件2:允许离线(据说最近流行强制在线。。。如果这样只好去写恶心的数据结构了)。
CDQ分治在可以使用的情况下很多高级数据结构题可以用CDQ分治干过去,不仅时空优越而且易于调试(虽然我并不觉得很好调试
大体思路是将问题不断分成两个子问题,用前一个子问题中的修改操作去更新后一个子问题,这样之后就得到了两个互不影响的子问题,达到分治的目的。
贴一道版题代码:BZOJ 1176
#include<bits/stdc++.h>
using namespace std;
#define lowbit(x) ((x)&-(x))
struct data{
int v,x,y,d,f,pos;
bool operator <(const data& w)const{
if(x!=w.x) return x<w.x;
if(y!=w.y) return y<w.y;
return pos<w.pos;
}
}a[],tmp[];
int s,w,t[],cnt,ans[];
int read(int& x){
x=; int f=,a=getchar();
while(a<'' || a>'') {if(a=='-') f=-; a=getchar();}
while(a>='' && a<='') x=x*+a-'',a=getchar(); x*=f;
}
inline void add(int y,int x){for(int i=y;i<=w;i+=lowbit(i)) t[i]+=x;}
inline int query(int y){int ret=; for(int i=y;i;i-=lowbit(i)) ret+=t[i]; return ret;}
void CDQ(int l,int r){
if(l==r) return;
int mid=(l+r)>>,t1=l-,t2=mid; //这里写错调了老半天
for(int i=l;i<=r;i++){
if(a[i].v<=mid && !a[i].pos) add(a[i].y,a[i].d);
if(a[i].v>mid && a[i].pos) ans[a[i].pos]+=query(a[i].y)*a[i].f;
}
for(int i=l;i<=r;i++)
if(a[i].v<=mid && !a[i].pos) add(a[i].y,-a[i].d);
for(int i=l;i<=r;i++)
if(a[i].v<=mid) tmp[++t1]=a[i];
else tmp[++t2]=a[i];
for(int i=l;i<=r;i++) a[i]=tmp[i];
CDQ(l,mid); CDQ(mid+,r);
}
int main(){
read(s); read(w); int t,x,y,d,x1,x2,y1,y2;
while(){
read(t);
if(t==){
read(x); read(y); read(d);
a[++cnt]=(data){cnt,x,y,d,,};
}else if(t==){
read(x1); read(y1); read(x2); read(y2); ++ans[];
a[++cnt]=(data){cnt,x1-,y1-,,,ans[]};
a[++cnt]=(data){cnt,x2,y2,,,ans[]};
a[++cnt]=(data){cnt,x1-,y2,,-,ans[]};
a[++cnt]=(data){cnt,x2,y1-,,-,ans[]};
}else break;
}
sort(a+,a++cnt);
CDQ(,cnt);
for(int i=;i<=ans[];i++)
printf("%d\n",ans[i]);
return ;
}
胡扯两句——CDQ分治的更多相关文章
- Hdu5126-stars(两次CDQ分治)
题意: 简化就是有两种操作,一种是插入(x,y,z)这个坐标,第二种是查询(x1,y1,z1)到(x2,y2,z2)(x1<=x2,y1<=y2,z1<=z2)的长方体包含多少个点. ...
- 【Luogu1393】动态逆序对(CDQ分治)
[Luogu1393]动态逆序对(CDQ分治) 题面 题目描述 对于给定的一段正整数序列,我们定义它的逆序对的个数为序列中ai>aj且i < j的有序对(i,j)的个数.你需要计算出一个序 ...
- cdq分治的小结
cdq分治 是一种特殊的分治 他的思想: 1.分治l,mid 2.分治mid+1,r 3.计算l,mid对mid+1,r的影响 3就是最关键的地方 这也是cdq的关键点 想到了这一步基本就可以做了 接 ...
- 【洛谷3157】[CQOI2011] 动态逆序对(CDQ分治)
点此看题面 大致题意: 给你一个从\(1\)到\(n\)的排列,问你每次删去一个元素后剩余的逆序对个数. 关于\(80\)分的树套树 为了练树套树,我找到了这道题目. 但悲剧的是,我的 线段树套\(T ...
- luogu P3157 [CQOI2011]动态逆序对(CDQ分治)
题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序 ...
- CDQ分治题目小结
CDQ分治属于比较特殊的一类分治,许多问题转化为这类分治的时候,时空方面都会有很大节省,而且写起来没有这么麻烦. 这类分治的特殊性在于分治的左右两部分的合并,作用两部分在合并的时候作用是不同的,比如, ...
- [学习笔记] CDQ分治 从感性理解到彻底晕菜
最近学了一种叫做CDQ分治的东西...用于离线处理一系列操作与查询似乎跑得很快233 CDQ的名称似乎源于金牌选手陈丹琦 概述: 对于一坨操作和询问,分成两半,单独处理左半边和处理左半边对于右半边的影 ...
- $CDQ$分治总结
A.\(CDQ\) 分治 特别基础的教程略. \(CDQ\)分治的优缺点: ( 1 )优点:代码量少,常数极小,可以降低处理维数. ( 2 )缺点:必须离线处理. \(CDQ\)分治与其他分治最本质的 ...
- BZOJ1173 CDQ分治 笔记
目录 二维数据结构->cdq 预备知识 T1: 二维树状数组 T2:cdq分治 bzoj1176 mokia:Debug心得 一类特殊的CDQ分治 附: bzoj mokia AC代码 二维数据 ...
随机推荐
- [转载] 高效 MacBook 工作环境配置
原文: http://mp.weixin.qq.com/s?__biz=MjM5NzMyMjAwMA==&mid=208231200&idx=1&sn=8a76ddc56c1f ...
- sysfs接口函数的建立_DEVICE_ATTR(转)
sysfs接口函数到建立_DEVICE_ATTR 最近在弄Sensor驱动,看过一个某厂家的成品驱动,里面实现的全都是sysfs接口,hal层利用sysfs生成的接口,对Sensor进行操作. 说道s ...
- poj3334Connected Gheeves(二分)
链接 二分高度,算面积的地方有点麻烦,没有用求交点的模板,直接自己按三角形相似手算了一下,写的有点麻烦. 上下界直接取水可放的最高点以及最低点. 自己的长得很挫的代码 #include <ios ...
- PostgreSQL 8.1 中文文档(转)
PostgreSQL 8.1 中文文档(转) http://www.php100.com/manual/PostgreSQL8/ 或者点击下面链接 PostgreSQL 8.1 中文文档
- Winform_播放声音文件
1.调用非托管的dll using System.Runtime.InteropServices; //DllImport命名空间的引用 class test //提示音 { [DllImport ...
- iOS开发 判断用户是否开启了热点
- (BOOL)achiveUserHotspotOpening { return [UIApplication sharedApplication].statusBarFrame.size.heig ...
- php中mysql数据库异步查询实现
问题 通常一个web应用的性能瓶颈在数据库.因为,通常情况下php中mysql查询是串行的.也就是说,如果指定两条sql语句时,第二条sql语句会等到第一条sql语句执行完毕再去执行.这个时候,如果执 ...
- eclipse设置字体、背景(豆绿)色、自动提示
背景色:(护眼豆绿色) window-->preferences-->General-->Editors-->Text Editors-->(最下遍一栏中的)Backgr ...
- OpenCV_轮廓的查找、表达、绘制、特性及匹配
转摘网址为:http://www.cnblogs.com/slysky/archive/2011/10/14/2212227.html 虽然Canny之类的边缘检测算法可以根据像素间的差异检测出轮廓边 ...
- One Class SVM, SVDD(Support Vector Domain Description)(转)
今天给大家介绍一下one class classification以及用SVDD(support vector domain description)做one class classification ...