spoj LCMSUM sigma(lcm(i,n));
Problem code: LCMSUM |
Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n.
Input
The first line contains T the number of test cases. Each of the next T lines contain an integer n.
Output
Output T lines, one for each test case, containing the required sum.
Example
Sample Input :
3
1
2
5
Sample Output :
1
4
55
Constraints
1 <= T <= 300000
1 <= n <= 1000000
题意:sigma(lcm(i,n)) ; 1<=i<=n
思路:题意倒是很简单,有类似的题目sigma(gcd(i,n)) ;1<=i<=n;
一看就是果然是同类型的。
gcd(i,n)的题目 http://www.cnblogs.com/tom987690183/p/3247439.html
这个是求lcm()最小公倍数.
同样的思路,我们枚举gcd() = d 则在[ 1 , n ]中与n最大公约数为d的值有euler(n/d)个.
这些数的和为euler(n/d)*n/2; 我们知道lcm = x*n/(gcd(x,n)) = > x*n/d ;
因为与n gcd() = d的数字为x1,x2,x3....
根据lcm = x*n/(gcd(x,n)) 可以得到 (n/d)*(x1+x2+x3...) => [euler(n/d)*n/2]*(n*d);
这里需要注意的是当gcd(i,n) = n的时候,用euler(n)*n/2算的时候是不对的,就特判吧。
这样的思路,我们就可以试一下打欧拉表opl[ ],需要时间o(N);
然后对于n,要用sqrt(n)的时间。
T*sqrt(n)+o(N) = 3^8+10^6.果断超时。以为能ac,吼吼。
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef long long LL; const int maxn = 1e6+;
int opl[maxn];
void init()
{
for(int i=;i<maxn;i++) opl[i] = i;
for(int i=;i<maxn;i++)
{
if(opl[i]==i) opl[i] = i-;
else continue;
for(int j=i+i;j<maxn;j=j+i)
opl[j] = opl[j]/i*(i-);
}
}
int main()
{
int T;
LL n;
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
LL sum = ;
for(LL i=;i*i<=n;i++)
{
if(n%i==)
{
if(i!=n)
sum = sum + (n/i)*(opl[n/i]*n/);
LL tmp = n/i;
if(tmp!=i && tmp!=n)
sum = sum + i*(opl[i]*n/);
}
}
printf("%lld\n",sum+n);
}
return ;
}
这样的话,是不行了。
原始相当于

也就能转化为(easy)

这样的话,我们就能单独的求出euler(a)*a/2;然后用它来筛选g[n]的值。
(x|n的意思代表 n是x的倍数)
我们想到在第一种方法里,我们用sqrt(n)来求它的因子的方法。
同理,逆向一下就好。
这样我们只需要o(N) 的时间对g[]进行筛选。总的预处理时间
3*o(N) = > 3*10^6;
完毕。
需要注意的是,我们没有把gcd() = n的情况包含进去,所以最后要+n。
代码:
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std;
typedef long long LL; const int maxn = 1e6+;
LL opl[maxn];
LL g[maxn];
void init()
{
for(int i=;i<maxn;i++) opl[i] = i;
//这种方法筛选素数,不用和以前一样要先刷素数,还开num[];
for(int i=;i<maxn;i++)
{
if(opl[i]==i)
opl[i] = i-;
else continue;
for(int j=i+i;j<maxn;j=j+i)
opl[j] = opl[j]/i*(i-);
}
for(int i=;i<maxn;i++){
opl[i] = opl[i]*i/;
g[i] = opl[i];
}
for(long long i=;i<=;i++) //这里的i 不能用int,肯定会超int的
{
for(long long j=i*i,k=i;j<maxn;j=j+i,k++)
if(i!=k) //不重复
g[j] = g[j] + opl[i]+opl[k];
else g[j] = g[j] + opl[i];
}
}
int main()
{
init();
int T;
LL n;
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
printf("%lld\n",g[n]*n+n);
}
return ;
}
spoj LCMSUM sigma(lcm(i,n));的更多相关文章
- SPOJ LCMSUM - LCM Sum
题意是求: $\sum_{i = 1}^{n}lcm(i, n)$ $= \sum_{i = 1}^{n}\frac{ni}{gcd(i, n)}$ $= n\sum_{i = 1}^{n}\frac ...
- SPOJ LGLOVE 7488 LCM GCD Love (区间更新,预处理出LCM(1,2,...,n))
题目连接:http://www.spoj.com/problems/LGLOVE/ 题意:给出n个初始序列a[1],a[2],...,a[n],b[i]表示LCM(1,2,3,...,a[i]),即1 ...
- (转载)有关反演和gcd
tips : 积性函数 F (n) = Π F (piai ) 若F (n), G (n)是积性函数则 F (n) * G (n) Σd | n F (n) 是积性函数 n = Σd | n φ ( ...
- 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- bzoj 2693: jzptab 线性筛积性函数
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 444 Solved: 174[Submit][Status][Discus ...
- 【莫比乌斯反演】BZOJ2154 Crash的数字表格
Description 求sigma lcm(x,y),x<=n,y<=m.n,m<=1e7. Solution lcm没有什么直接做的好方法,用lcm=x*y/gcd转成gcd来做 ...
- 2011 Multi-University Training Contest 4 - Host by SDU
A.Color the Simple Cycle(polya计数+字符串匹配) 此题的难点在于确定置换的个数,由a[i+k]=a[i], e[i+k]=e[i]联想到KMP. 于是把原串和原串扩大两倍 ...
- BZOJ2226: [Spoj 5971] LCMSum
题解: 考虑枚举gcd,然后问题转化为求<=n且与n互质的数的和. 这是有公式的f[i]=phi[i]*i/2 然后卡一卡时就可以过了. 代码: #include<cstdio> # ...
随机推荐
- SQL isnull函数
select * from emp;
- oracle 分页(rownum的理解) 以及 树节点的查询
1:什么是rownum, rownum的生成, rownum相关的符号操作 Rownum是oracle生成结果集时得到的一个伪列, 按照读出行的顺序, 第一条rownum=1, 第二条=2. 对于 O ...
- 封装pdo单例模式类
<?php /** * MyPDO * @author Jason.Wei <jasonwei06@hotmail.com> * @license http://www.sunblo ...
- android studio ADB not responding.
打开cmd 输入 netstat -aon|findstr "5037" 找到谁在占用5037端口 记住他的pid. 例如pid为 2028 输入 taskkill ...
- JS 实现中英文翻译
缺点就是还是会闪出中文,但是效果还行. var langPackage = { "主题":"Title", "下一页":"Next ...
- ./fedora_install_oracle.sh bad interpreter
错误原因之一很有可能是你的脚本文件是DOS格式的, 即每一行的行尾以\r\n来标识, 其ASCII码分别是0x0D, 0x0A.可以有很多种办法看这个文件是DOS格式的还是UNIX格式的, 还是MAC ...
- js 实现精确加减乘除
//加法 function accAdd(arg1, arg2) { var r1, r2, m; try { r1 = arg1.toString().split(".")[1] ...
- 夺命雷公狗ThinkPHP项目之----企业网站6之栏目的添加(主要用模型来验证字段)
我们刚才的控制器已经写好了,那么我们现在就来完成我们的模型, 首先我们在Model目录下创建一个CategoryModel.class.php 代码如下: <?php namespace Adm ...
- android环境搭建——工欲善其事,必先利其器 2
前两天鼓捣android, 搭建环境,不想麻烦就用了 adt-bundle-windows-x86-20140702. rar , 起个模拟器哇塞,太爽了. 出去转一圈唠会回来正好启动成功!有个网友 ...
- 【php】目录、路径和文件 操作
目录操作 解析路径: basename() - 返回路径的文件名部分 获取目录部分: dirname() - 返回路径的目录部分 路径信息: pathinfo() - 返回数组(目录名,基本名,扩展名 ...