Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 47905   Accepted: 13903

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

 
 
题目意思:
给一个木板,宽度分为单位为1的段,贴n张海报,海报从l到r,高度等于木板的高度,问最终能看到多少张海报。
 
 
思路:
若每张海报都有一个特定的颜色用数字表示,那么问题就转变为从minl---maxr区间内有多少不同的数字,那么就是线段树区间更新的模型了。
l r最大为10000000,建树的话还要乘上4,很明显爆空间,需要离散化,离散化的时候不能是普通的离散化,需要考虑边界问题,离散化后求染色数目即可。
 
 
代码:
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
#include <cmath>
#include <set>
using namespace std; #define N 40005
#define ll root<<1
#define rr root<<1|1
#define mid (a[root].l+a[root].r)/2 int max(int x,int y){return x>y?x:y;}
int min(int x,int y){return x<y?x:y;}
int abs(int x,int y){return x<?-x:x;} int n;
int x[N];
int m; int bin_s(int key){
int l=, r=m-;
while(l<=r){
int mm=(l+r)/;
if(x[mm]==key) return mm;
if(x[mm]>key) r=mm-;
else if(x[mm]<key) l=mm+;
}
} struct Line{
int l, r;
}line[N]; struct node{
int l, r, val;
bool f;
}a[N*]; void build(int l,int r,int root){
a[root].l=l;
a[root].r=r;
a[root].val=-;
if(l==r) return;
build(l,mid,ll);
build(mid+,r,rr);
} void down(int root){
if(a[root].val>&&a[root].l!=a[root].r){
a[ll].val=a[rr].val=a[root].val;
a[root].val=-;
}
} void update(int l,int r,int val,int root){
if(a[root].val==val) return;
if(a[root].l==l&&a[root].r==r){
a[root].val=val;
return;
}
down(root);
if(r<=a[ll].r) update(l,r,val,ll);
else if(l>=a[rr].l) update(l,r,val,rr);
else{
update(l,mid,val,ll);
update(mid+,r,val,rr);
}
if(a[ll].val==a[rr].val&&a[ll].val>) a[root].val=a[ll].val;
} bool visited[N];
int ans; void query(int root){
if(a[root].val!=-&&!visited[a[root].val]) {
ans++;
visited[a[root].val]=true;
return;
}
if(a[root].l==a[root].r)return ;
down(root);
query(ll);
query(rr);
} void out(int root){
if(a[root].l==a[root].r) {
printf("%d ",a[root].val);
return;
}
down(root);
out(ll);
out(rr);
} main()
{
int t, i, j, k; cin>>t;
while(t--){
scanf("%d",&n);
k=;
for(i=;i<n;i++) {
scanf("%d %d",&line[i].l,&line[i].r);
x[++k]=line[i].l;
x[++k]=line[i].r;
}
sort(x+,x+k);
k=unique(x+,x+k+)-x;
m=k;
for(i=;i<k;i++){
if(x[i]-x[i-]>) x[m++]=x[i]-;
}
sort(x,x+m);
build(,m,);
for(i=;i<n;i++){
int l=bin_s(line[i].l);
int r=bin_s(line[i].r);
update(l,r,i+,); }
memset(visited,false,sizeof(visited));
ans=;
query();
printf("%d\n",ans);
//out(1);
}
}

POJ 2528 区间染色,求染色数目,离散化的更多相关文章

  1. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  2. zoj 1610 Count the Colors 【区间覆盖 求染色段】

    Count the Colors Time Limit: 2 Seconds      Memory Limit: 65536 KB Painting some colored segments on ...

  3. POJ - 2528 区间离散化,线段树区间修改,区间询问

    这个题非常有意思的地方是,我们发现区间[1,4]和[5,8]是紧挨着的,因为这个的数代表的是一段区间,原本我们对于普通的离散, a[1]=1,a[2]=5,a[3]=6,a[4]=8;数组下标就是重新 ...

  4. poj 2528(区间改动+离散化)

    题意:有一个黑板上贴海报.给出每一个海报在黑板上的覆盖区间为l r,问最后多少个海报是可见的. 题解:由于l r取值到1e7,肯定是要离散化的,但普通的离散化会出问题.比方[1,10],[1,4],[ ...

  5. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  6. poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  7. POJ 2528 Mayor‘s poster 线段树+离散化

    给一块最大为10^8单位宽的墙面,贴poster,每个poster都会给出数据 a,b,表示该poster将从第a单位占据到b单位,新贴的poster会覆盖旧的,最多有10^4张poster,求最后贴 ...

  8. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

  9. poj 2528 poster经典线段树+lazy+离散化

    #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; #def ...

随机推荐

  1. 选择列表控件的使用(PickList)

    需要下载picklist.dll类库配合使用 <%@ Register TagPrefix="cc1" Namespace="PickListControl&quo ...

  2. hostapd源代码分析(三):管理帧的收发和处理

    hostapd源代码分析(三):管理帧的收发和处理 原文链接:http://blog.csdn.net/qq_21949217/article/details/46004379 这篇文章我来讲解一下h ...

  3. 【摘抄】meta系列用法总结【持续更新中】

    meta标签分两大部分:HTTP标题信息(HTTP-EQUIV)和页面描述信息(NAME). ★页面描述信息NAME变量  name是描述网页的,对应于Content(网页内容),以便于搜索引擎机器人 ...

  4. D3.js 其他选择元素方法

    在上一节中,已经讲解了 select 和 selectAll,以及选择集的概念.本节具体讲解这两个函数的用法. 假设在 body 中有三个段落元素: <p>Apple</p> ...

  5. Akka学习博客

    http://www.iteblog.com/archives/1157 以示例介绍了actor模型.

  6. icp算法基本思想

    Icp基本思想参考资料:http://www.cnblogs.com/jian-li/articles/4945676.html ,包括点-点,点-面的各种icp变种 Icp算法就是两个点云X.Y之间 ...

  7. windows+linux环境部署搭建

    http://www.cnblogs.com/lioillioil/archive/2011/09/14/2176595.html

  8. Graph-tool简介 - wiki

    graph-tool is a Python module for manipulation and statistical analysis of graphs[disambiguation nee ...

  9. Supervisor 守护 dotnetcore 程序

    版权声明:本文由屈政斌原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/240 来源:腾云阁 https://www.qclo ...

  10. js用ajax和不同页面的php互相传值的方法

    js里的代码:<script> var json; //获取所有class名为zhi的标签 var zhi = document.getElementsByClassName('zhi') ...