[POI2002][HAOI2007]反素数
题意
想法
证明这样一个结论
对于一个可行的反素数\(p\)
\(p = \sum_{i}^{k} p_{k} ^ {c_k}\) 当 \(p_i > p_j 有 c_i < c_j\)
反证法
若\(p_i > p_j 有 c_i > c_j\)则交换\(c_i 与 c_j\)得到一个新数\(s\)
此时知\(s < p\ and \ g(p) = g(s)\)
不符
代码
就12个素数位,完全可以爆搜
代码就不放了
[POI2002][HAOI2007]反素数的更多相关文章
- Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925
题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...
- 洛谷 P1463 [POI2002][HAOI2007]反素数
题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...
- [POI2002][HAOI2007]反素数 数论 搜索 好题
题目描述: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4, ...
- 数学结论【p1463】[POI2002][HAOI2007]反素数
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...
- [POI2002][HAOI2007]反素数(Antiprime)
题目链接 这道题需要用到整数唯一分解定理以及约数个数的计算公式.这里我就不再阐述了. 公式可以看出,只有指数影响约数个数,那么在唯一分解出的乘式中,指数放置的任何位置都是等价的.(即 23*34*57 ...
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
- 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)
\([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
随机推荐
- 好奇!仅 13kB 大小的游戏,源码长啥样?
这个马赛克风格的表情正好 13Kb,有人竟然能用一个表情大小的空间,制作个游戏出来.我就不信这么点的地儿,能写出个花来?游戏能好玩吗?因为这些游戏点开就能玩,我抱着试一试的心态把玩了一会. 事实证明是 ...
- TCC分布式事务的实现原理
目录 一.写在前面 二.业务场景介绍 三.进一步思考 四.落地实现TCC分布式事务 (1)TCC实现阶段一:Try (2)TCC实现阶段二:Confirm (3)TCC实现阶段三:Cancel 五.总 ...
- 将DataFrame赋值为可变变量在spark中多次赋值后运行速度减慢的问题
该问题先标记上,之后有空了研究原因. 在var dataframe后将dataframe作为参数输入某方法,将结果重新赋予该dataframe,会导致spark运行显著减慢速度.暂时不知道原因,之后研 ...
- Spring session redis ERR unknown command 'CONFIG'
部署线上服务启动报错 redis.clients.jedis.exceptions.JedisDataException: ERR unknown command 'CONFIG' Redis CON ...
- skywalking实现分布式系统链路追踪
一.背景 随着微服务的越来越流行,我们服务之间的调用关系就显得越来越复杂,我们急需一个APM工具来分析系统中存在的各种性能指标问题以及调用关系.目前主流的APM工具有CAT.Zipkin.Pinpoi ...
- (六)、Docker 之 Dockerfile
1.什么是Dockerfile Dockerfile是用来构建Docker镜像的构建文件,是由一系列命令和参数构成的脚本. 2.Dockerfile解析过程 前提认知: 每条保留字指令都必须为大写字母 ...
- 2021.9.22考试总结[NOIP模拟59]
T1 柱状图 关于每个点可以作出两条斜率绝对值为\(1\)的直线. 将绝对值拆开,对在\(i\)左边的点\(j\),\(h_i-i=h_j-j\),右边则是把减号换成加号. 把每个点位置为横坐标,高度 ...
- 最容易出错的C语言指针
C语言指针说难不难但是说容易又是最容易出错的地方,因此不管是你要做什么只要用到C指针你就跳不过,今天咱们就以 十九个例子来给大家简单的分析一下指针的应用,最后会有C语言视频资料提供给大家更加深入的参考 ...
- STM32 PWM功能在关闭时GPIO电平不确定的情况
刚开始接触STM32,遇到一个项目中出现在产品调试中出现在关闭PWM输出时,GPIO电平有不确定的情况.在网上查阅资料发现大神们是这样解释的:PWM在一个脉冲没有结束时关闭输出,会导致GPIO电平不确 ...
- Python课程笔记(一)
由于新冠状病毒的爆发,不得不在家里上网课,开课已经两个礼拜了,今天上完Python课后,准备整理一下最近学习Python的笔记. 人生苦短,我用Python 一.Hello World 初学一门新的语 ...